Исследование влияния сезонных и широтных вариаций атомарного кислорода на интенсивность собственного излучения ночных атмосфер Земли и Марса

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе используются экспериментальные данные о характерных концентрациях атомарного кислорода в верхних атмосферах Земли и Марса. Рассчитаны значения интегральной светимости полос Герцберга I для средних широт и экваториальной зоны Земли, а также для северных широт и экваториальной зоны Марса. Обсуждается корреляция результатов теоретических расчетов интенсивности свечения полос электронно-возбужденного молекулярного кислорода в атмосфере Земли в спектральном диапазоне 250–370 нм с экспериментальными данными по ночному свечению молекулярного кислорода, полученными с космического шаттла «Дискавери» (STS-53). Представлены рассчитанные значения общей интегральной светимости системы полос Герцберга I в атмосфере Земли для различных сезонов и для точек равноденствия Марса. Показано, что на средних широтах Земли в период низкой солнечной активности максимальные значения интегральной светимости отмечаются в июле, а в экваториальной зоне – в апреле. На северных широтах Марса максимальные значения отмечаются в точке осеннего равноденствия.

Полный текст

Доступ закрыт

Об авторах

О. В. Антоненко

Полярный геофизический институт (ПГИ)

Автор, ответственный за переписку.
Email: antonenko@pgia.ru
Россия, Апатиты

А. С. Кириллов

Полярный геофизический институт (ПГИ)

Email: antonenko@pgia.ru
Россия, Апатиты

Список литературы

  1. Кораблев О. И. Новые методы спектроскопических исследований планетных атмосфер с космических аппаратов: Диссертация и автореферат по ВАК РФ 01.03.04. 2003.
  2. Шефов Н. Н., Семенов А. И., Хомич В. Ю. Излучение верхней атмосферы – индикатор ее структуры и динамики. М.: ГЕОС, 2006. 741 с.
  3. Broadfoot A. L., Bellaire P. J., Jr. Bridging the gap between ground-based and space-based observations of the Night airglow // J. Geophys. Res. 1999. V. 104. Iss. A8. P. 17127–17138.
  4. Migliorini A., Piccioni G., Gerard J. C. et al. The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express // Icarus. 2013. V. 223. Iss. 1. P. 609–614.
  5. Montmessina F., Korablev O., Lefèvrec F. et al. SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere // Icarus. 2017. V. 297. P. 195–216.
  6. Краснопольский В. А., Крысько А. А., Рогачев В. Н. и др. Спектроскопия свечения ночного неба Венеры на АМС «Венера-9» и «Венера-10» // Космические исследования. 1976. Т. 14. № 5. С. 789–795.
  7. Krasnopolsky V. A. Venus spectroscopy in the 3000– 8000 A region by Veneras 9 and 10 // Eds. Hunten D. M., Colin L, Donahue T. M., Moroz V. I. Venus. 1983. University of Arizona Press. Tucson. AZ. P. 459–483.
  8. Lawrence G. M., Barth C. A., Argabright V. Excitation of the Venus Night airglow // Science. 1977. V. 195. P. 573–574.
  9. Slanger T. G., Black G. The O2(C3Δu→a1Δg) bands in the Nightglow spectrum of Venus // Geophys. Res. Lett. 1978. V. 5. Iss. 11. P. 947–948.
  10. Fedorova A. A., Lefevre F., Guslyakova S. et al. The O2 Nightglow in the martian atmosphere by SPICAM onboard of Mars-Express // Icarus. 2012. V. 219. Iss. 2. P. 596–608.
  11. Bertaux J.-L., Gondet B., Lefevre F. et al. First detection of O2 1.27 μm Nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions // J. Geophys. Res. 2012. V. 117. Art.ID. E00J04.
  12. Кириллов А. С. Модель населенностей колебательных уровней состояний молекулы кислорода, исходных для полос Герцберга, на высотах нижней термосферы и мезосферы // Геомагнетизм и аэрономия. 2012. Т. 52. № 2. С. 258–264.
  13. Kirillov A. S. Electronic kinetics of main atmospheric components in high-latitude lower thermosphere and mesosphere // Ann. Geophys. 2010. V. 28. Iss. 1. P. 181–192.
  14. Kirillov A. S. The calculation of quenching rate coefficients of O2 Herzberg states in collisions with CO2, CO, N2, O2 molecules // Chem. Phys. Lett. 2014. V. 592. P. 103–108.
  15. Krasnopolsky V. A. Excitation of the oxygen Nightglow on the terrestrial planets // Planet. Space Sci. 2011. V. 59. Iss. 8. P. 754–756.
  16. Bates D. R. Oxygen band system transition arrays // Pla-net. Space Sci. 1989. V. 37. N. 7. P. 881–887.
  17. Антоненко О. В., Кириллов А. С. Моделирование спектра свечения ночного неба Земли для систем полос, излучаемых при спонтанных переходах между различными состояниями молекулы электронно-возбужденного кислорода // Изв. РАН. Сер. физическая. 2021. Т. 85. № 3. С. 310–314.
  18. Антоненко О. В., Кириллов А. С. Моделирование интенсивности свечения полос Чемберлена и Герцберга I в ночном небе Земли и сравнение результатов расчетов с экспериментальными данными // Геомагнетизм и аэрономия. 2022. Т. 62. № 5. C. 661–670.
  19. Перминов В. И., Семенов А. И., Шефов Н. Н. Дезактивация колебательных состояний молекул гидроксила атомарным и молекулярным кислородом в области мезопаузы // Геомагнетизм и аэрономия. 1998. Т. 38. № 6. С. 642–645.
  20. Sheese P. E., McDade I.C., Gattinger R. L. et al. Atomic oxygen densities retrieved from Optical Spectrograph and Infrared Imaging System observations of O2 A-band airglow emission in the mesosphere and lower thermosphere // J. Geophys. Res. 2011. V. 116. Art.ID. D01303.
  21. Gagne M.-E., Melo S. M.L., Lefevre F. et al. Modeled O2 airglow distributions in the Martian atmosphere // J. Geophys. Res. 2012. V. 117. Art.ID. E06005.
  22. Семенов А. И., Перцев Н. Н., Шефов Н. Н. и др. Расчет высотных профилей температуры и концентрации атмосферы на 30–110 км // Геомагнетизм и аэрономия. 2004. Т. 44. № 6. С. 835–840.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема переходов между различными электронными состояниями молекулы [O2].

3. Рис. 2. Высотные профили концентраций атомарного кислорода [O].

Скачать (31KB)
4. Рис. 3. Высотные профили объемных интенсивностей излучения полос Герцберга I. Обозначения аналогично рис. 2.

Скачать (30KB)
5. Рис. 4. Экспериментальные и рассчитанные значения интегральной светимости полос Герцберга I для верхней атмосферы Земли.

Скачать (90KB)
6. Рис. 5. Рассчитанные значения интегральной светимости полос Герцберга I для верхней атмосферы Марса (б) сравниваются с экспериментальными данными с шаттла «Дискавери» (STS-53) (а).

Скачать (77KB)
7. Рис. 6. Значения общей интегральной светимости для верхних атмосфер Марса (а) и Земли (б, в). Обозначения аналогично рис. 2.

Скачать (20KB)

© Российская академия наук, 2024