Kinetic relationships of 90Sr sorption from aqueous solutions by carbonate-containing zirconium hydroxide Termoxid-3K

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The kinetic relationships of the 90Sr sorption from fresh water by Termoxid-3K inorganic sorbent were studied. The influence of the solution stirring rate, strontium concentration, and temperature on the sorption rate constant, diffusion coefficients, and kinetic regime was investigated, and the experimental results obtained were modeled using models of diffusion and chemical kinetics. The strontium sorption onto T-3K sorbent has a two-stage character and proceeds in the internal diffusion mode with a limiting contribution of the chemisorption process in the first stage. The diffusion coefficients of strontium were 10–12–10–13 m2/s, and the activation energy in the first stage of sorption was 93.3 and at the second stage, 23.8 kJ/mol.

Texto integral

Acesso é fechado

Sobre autores

N. Belokonova

Yeltsin Ural Federal University

Email: av.voronina@mail.ru
Rússia, ul. Mira 19, Yekaterinburg, 620002

A. Voronina

Yeltsin Ural Federal University

Autor responsável pela correspondência
Email: av.voronina@mail.ru
Rússia, ul. Mira 19, Yekaterinburg, 620002

Bibliografia

  1. Yi I.-G., Kang J.-K., Lee S.-C., Lee C.-G., Kim S.-B. // Micropor. Mesopor. Mater. 2019. Vol. 279. P. 45–52.
  2. Bochkarev G.R., Pushkareva G.I. // J. Min. Sci. 2009. Vol. 45. P. 290–294.
  3. Başçetin E., Atun G. // J. Chem. Eng. Data. 2010. Vol. 55. N 2. P. 783–788.
  4. Boyd G.E., Adamson A.W., Myers L.S., Jr. // J. Am. Chem. Soc. 1947. Vol. 69. N 11. P. 2836–2848.
  5. Merceille A., Weinzaepfel E., Barré Y., Grandjean A. // Sep. Purif. Technol. 2012. Vol. 96. P. 81–88.
  6. Missana T., Garcia-Gutierrez M., Alonso U. // Phys. Chem. Earth. Parts A/B/C. 2008. Vol. 33. Suppl. 1. P. S156–S162.
  7. Abdel-Karim A.M., Zaki A.A., Elwan W., El-Naggar M.R., Gouda M.M. // Appl. Clay Sci. 2016. Vol. 132–133. P. 391–401.
  8. Kamel N.H.M. // J. Environ. Radioact. 2010. Vol. 101. N 4. P. 297–303.
  9. Ma B., Oh S., Shin W.S., Choi S.-J. // Desalination. 2011. Vol. 276. P. 336–346.
  10. Chen Y., Wang J. // Nucl. Eng. Des. 2012. Vol. 242. P. 445–451.
  11. Недобух Т.А., Захарова Т.С., Воронина А.В., Кутергин А.С., Семенищев В.С. // Сорбционные и хроматографические процессы. 2022. Т. 22. № 4. С. 473–484.
  12. Voronina A.V., Bajtimirova M.O., Semenishchev V.S. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 2. P. 913–920.
  13. Fei C., Linlin Y., Fei G., Xiao G., Qiang X., Zhen Z., Feng Z., Jingguang F. // Radiat. Med. Prot. 2022. Vol. 3. N 2. P. 96–100.
  14. Bezhin N.A., Dovhyi I.I., Milyutin V.V., Nekrasova N.A., Tokar’ E.A., Tananaev I.G. // Radiochemistry. 2019. Vol. 61. P. 700–706.
  15. Mironyuk I., Mykytyn I., Vasylyeva H., Savka K. // J. Mol. Liq. 2020. Vol. 316. ID 113840.
  16. Kononenko O.A., Milyutin V.V., Kaptakov V.O., Makarenkov V.I., Kozlitin E.A. // J. Radioanal. Nucl. Chem. 2024. Vol. 333. P. 4889–4897.
  17. Singh O.V., Tandon S.N. // Int. J. Appl. Radiat. Isot. 1977. Vol. 28. N 8. P. 701–704.
  18. Matskevich A.I., Tokar E.A., Sokolnitskaya T.A., Markin N.S., Priimak I.D., Egorin A.M. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 5691–5699.
  19. Shashkova I., Kitikova N., Sycheva O., Dzikaya A., Nurbekova M., Hosseini-Bandegharaei A., Ivanets A. // Ceram. Int. 2024. Vol. 50. N 13. Part A. P. 22836–22847.
  20. Mudruk N., Maslova M. // Int. J. Mol. Sci. 2023. Vol. 24. N 9. ID 7903.
  21. Matel L., Dulanska S., Silikova V. // XXXIX Days of Radiation Protection. Proc. Presentations and Posters. Bratislava, Nov. 6–10, 2017. P. 578.
  22. Tel H., Altaş, Y., Eral M., Sert, Ş., Çetinkaya B., İnan S. // Chem. Eng. J. 2010. Vol. 161. P. 151–160.
  23. Belokonova N.V., Tarasovskikh T.V., Voronina A.V. // AIP Conf. Proc. 2022. Vol. 2466. ID 050043. https://doi.org/10.1063/5.0088731
  24. Voronina A.V., Noskova A.Yu., Semenishchev V.S., Gupta D.K. // J. Environ. Radioact. 2020. Vol. 217. ID 106210.
  25. Никифоров А.Ф., Юрченко В.В. // Сорбционные и хроматографические процессы. 2010. Т. 10. № 5. С. 676–684.
  26. Mironyuk I., Tatarchuk T., Vasylyeva H., Naushad Mu., Mykytyn I. // J. Environ. Chem. Eng. 2019. Vol. 7. N 6. ID 103430.
  27. Li D., Zhang B., Xuan F. // J. Mol. Liq. 2015. Vol. 209. P. 508–514.
  28. Ripon R.I., Begum Z.A., Ahmmad B., Hirose F., Takagai Y., Rahman I.M.M. // J. Environ. Chem. Eng. 2024. Vol. 12. N 5. ID 113984.
  29. Shashkova I.L., Ivanets A.I., Kitikova N.V., Sillanpää M. // J. Taiwan Inst. Chem. Eng. 2017. Vol. 80. P. 787–796.
  30. Maslova M.V., Ivanenko V.I., Gerasimova L.G. // Russ. J. Phys. Chem. A. 2019. Vol. 93. N 7. P. 1245–1251.
  31. Voronina A.V., Belokonova N.V. // Radiochemistry. 2023. Vol. 65. N 4. P. 473–484.
  32. Voronina A.V., Belokonova N.V., Suetina A.K., Semenishchev V.S. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 4021–4030.
  33. Воронина А.В., Белоконова Н.В., Суетина А.К. Патент RU 2796325 C1. Опубл. 22.05.2023.
  34. Кокотов Ю.А., Пасечник В.А. Равновесие и кинетика ионного обмена. Л.: Химия, 1970. 336 с.
  35. Гельферих Ф. Иониты. М.: Изд-во иностр. лит., 1962. 490 с.
  36. Киекпаев М.А., Строева Э.В. // Вестн. ОГУ. 2006. № 5. С. 35–39.
  37. Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики: учебник для химических факультетов. М.: ВШ, 1974. 3-е изд. 400 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Kinetic dependences of strontium sorption by sorbent T-3K on the concentration of strontium in the solution, stirring speed 180 rpm.

Baixar (86KB)
3. Fig. 2. Kinetic dependences of strontium sorption by sorbent T-3K on the stirring speed, strontium concentration in solution 0.1 mg/l.

Baixar (75KB)
4. Fig. 3. Kinetic dependences in the coordinates of linear equations, υ = 900 rpm: a – pseudo-first-order models, b – pseudo-second-order models, c – Elovich models.

Baixar (235KB)
5. Fig. 4. Kinetic dependences of strontium sorption by sorbent T-3K at different temperatures, strontium concentration 1 mg/l, υ = 180 rpm.

Baixar (66KB)
6. Fig. 5. Dependence of the sorption rate constant on temperature.

Baixar (66KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025