Газопроницаемость нанокомпозитов полимер/2D-нанонаполнитель: структурная трактовка и наноэффекты

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Предложена структурная модель, позволяющая сделать точное описание газопроницаемости нанокомпозитов полимер/2D-нанонаполнитель. Обнаружена более высокая эффективность нанокомпозитов в снижении газопроницаемости по сравнению с микрокомпозитами. Этот эффект обусловлен сильными межфазными взаимодействиями в случае нанокомпозитов, что выражено в более высоком содержании непроницаемых для газа межфазных областей. Выполнена оценка максимального снижения газопроницаемости при фиксированном содержании нанонаполнителя.

Полный текст

Доступ закрыт

Об авторах

Г. В. Козлов

ФГБОУ ВО “Кабардино-Балкарский государственный университет им. Х.М. Бербекова”

Email: i_dolbin@mail.ru
Россия, Нальчик

И. В. Долбин

ФГБОУ ВО “Кабардино-Балкарский государственный университет им. Х.М. Бербекова”

Автор, ответственный за переписку.
Email: i_dolbin@mail.ru
Россия, Нальчик

Список литературы

  1. Yu F., Camilli L., Wang T. et. al. // Carbon. 2018. V. 132. P. 78–84.
  2. Yu Y.-H., Lin Y.-Y., Lin C.-H. et. al. // Polymer Chem. 2014. V. 5. № 2. P. 535–550.
  3. Aneja K.S., Bohm S., Khanna H.M. // Nanoscale. 2015. V. 7. № 42. P. 17879–17888.
  4. Qi K., Sun Y., Duan H. et. al. // Corrosion Sci. 2015. V. 98. № 5. P. 500–506.
  5. Li J., Cui J., Yang Y. et. al. // Compos. Sci. Techn. 2016. V. 129. № 1. P. 30–37.
  6. Kim H., Macosko C.W. // Polymer. 2009. V. 50. № 18. P. 3797–3809.
  7. Рейтлингер С.А. Проницаемость полимерных материалов. М.: Химия, 1974. 272 с.
  8. Nielsen L.E. // J. Macromol. Sci. A. 1967. V. 1. № 5. P. 929–942.
  9. Козлов Г.В., Заиков Г.Е., Микитаев А.К. Фрактальный анализ процесса газопереноса в полимерах: теория и практические применения. М.: Наука, 2009. 199 с.
  10. Микитаев А.К., Козлов Г.В., Заиков Г.Е. Полимерные нанокомпозиты: многообразие структурных форм и приложений. М.: Наука, 2009. 278 с.
  11. Дики Р.А. В кн.: Промышленные полимерные композиционные материалы. Ред. Ричардсон М. М.: Химия, 1980. С. 147–179.
  12. Андриевский Р.А. // Российский химический журнал. 2002. Т. 46. № 5. С. 50–56.
  13. Атлуханова Л.Б., Козлов Г.В. Физикохимия нанокомпозитов полимер-углеродные нанотрубки. М.: “Спутник +”, 2020. 292 с.
  14. Баланкин А.С. Синергетика деформируемого тела. М.: Изд-во Мин-ва Обороны СССР, 1991, 404 с.
  15. Bharadwaj R.K. // Macromolecules. 2001. V. 34. № 26. P. 9189–9192.
  16. Compton O.C., Kim S., Pierre et. al. // Adv. Mater. 2010. V. 22. № 11. P. 4759–4763.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Сравнение рассчитанных согласно уравнениям (1)–(3) (1, 2) и полученных экспериментально (3, 4) зависимостей коэффициента газопроницаемости по гелию (1, 3) и азоту (2, 4) для нанокомпозитов ПК/Гр.

Скачать (48KB)
3. Рис. 2. Предельная теоретическая (1) и полученная экспериментально (2) зависимости коэффициента газопроницаемости по гелию от объемного содержания наполнителя jn для микрокомпозитов (1) и нанокомпозитов ПК/Гр (2).

Скачать (65KB)

© Российская академия наук, 2024