Characteristics of (N-thiocyanato)chromates(III) of lanthanides(III) with pyridine-3-carboxylic acid

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

To complete the studies of double complex compounds, (N-thiocyanato)chromates(III) of lanthanide complexes with pyridine-3-carboxylic acid, new compounds of the compositions [LnL3(H2O)2][Cr(NCS)6] · · nH2O (Ln = Pr (I), n = 1.5; Sm (II), Gd (III), Tb (IV), n = 2; L = C6H5NO2). The substances were studied by chemical analysis, IR spectroscopy, and PXRD (CCDC No. 2427051–2427054). In the crystal structures of complexes I–IV, the cation has a chain structure due to the bidentate-bridging function of pyridine-3-carboxylic (nicotinic) acid molecules. The coordination environment of the lanthanide atoms consists of eight oxygen atoms belonging to six nicotinic acid molecules and two coordinated H2O molecules, located at the vertices of a distorted square antiprism. In the isolated [Cr(NCS)6]3– anions, the Cr coordination polyhedron consists of the N atoms of six thiocyanate ions and is close to a regular octahedron. In the structures of complexes I–IV, the space between polymeric cations is filled with complex anions and crystallization water molecules. Additionally, the structure is stabilized by intermolecular hydrogen bonds.

作者简介

E. Cherkasova

Kuzbass State Technical University named after T. F. Gorbachev

Kemerovo, 650000 Russia

N. Pervukhina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, 630090 Russia

N. Kurat’eva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, 630090 Russia

T. Cherkasova

Kuzbass State Technical University named after T. F. Gorbachev

Email: ctg.htnv@kuzstu.ru
Kemerovo, 650000 Russia

参考

  1. Хентов В.Я., Семченко В.В., Шачнева Е.Ю. Процессы комплексообразования природного и техногенного происхождения. М.: РУСАЙНС, 2020. 266 с.
  2. Qiang Zhao, Su-Juan Jin, Zhi Shen et al. // Inorg. Chim. Acta. 2024. V. 567. P. 122061. https://doi.org/10.1016/j.ica.2024.122061
  3. Xiuling Xu, Zhong Wang, Chong-Chong Yan et al. // J. Solid State Chem. 2020. V. 292. P. 121708. https://doi.org/10.1016/j.jssc.2020.121708
  4. Jin Zhang, Jing Huang, Jun Yang, Hong-Ji Chen // Inorg. Chem. Commun. 2012. V. 17. P. 163. https://doi.org/1016/j.inoche.2011.12.042
  5. Xiao-niu Fang, Wen-tong Chen, Dong-sheng Liu // Chem. Res. Chin. Univ. 2008. V. 24. № 5. P. 529. https://doi.org/1016/S1005-9040(08)60111-7
  6. Gonzalez-Vergara E., Hegenauer J., Saltman P. et al. // Inorg. Chim. Acta. 1982. V. 66. P. 115. https://doi.org/10.1016/S0020-1693(00)85799-0
  7. Jia G., Law G.L., Tanner P.A., Wong W.T. // Inorg. Chem. 2008.V. 47. № 20. P. 9431. https://doi.org/10.1021/ic8010103
  8. Alzamly A., Bakiro M., Ahmed S.H. et al. // Coord. Chem. Rev. 2020. V. 425. P. 213543. https://doi.org/1016/jccr.2020.213543
  9. Rong-Hua Hu, Shu Zhen Liu, Yu-Yu Xu et al. // J. Mol. Struct. 2022. V. 1265. P. 133396. https://doi.org/1016/molstruc.2022.133396
  10. Jiang-Gao Mao, Hong-Jie Zhang, Jia-Zuan Ni et al. // Polyhedron. 1998. V. 17. № 23-24. P. 3999. https://doi.org/10.1016/S0277-5387(98)00198-3
  11. Xinrui Wang, Yupeng Jiang, Antoine Tissot, Christian Serre // Coord. Chem. Rev. 2023. V. 497. P. 215454. https://doi.org/10.1016/jccr.2023.215454
  12. Jiménez J.-R., Doistau B., Poncet M., Piguet C. // Coord. Chem. Rev. 2021. V. 434. P. 215454. https://doi.org/10.1016/j.ccr.2023.213750
  13. Kumar S., Maji S., Sundararajan K. // J. Mol. Liquids. 2023. V. 386. P. 122545. https://doi.org/10.1016/j.molliq.2023.2122545
  14. Lis S., Hnatejko Z., Barczynski P., Elbanowski M. // J. Alloys Comp. 2002. V. 344. № 1-2. P. 70. https://doi.org/10.1016/S0925-8388(02)00310-9
  15. Świderski G., Kalinowska M., Wilczewska A.Z. et al. // Polyhedron. 2018. V. 150. № 1. P. 97. https://doi.org/10.1016/j.poly.2018.04.045
  16. Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Chem. Thermodynamics. 2021. V. 161. P. 106552. https://doi.org/10.1016/j.jct.2021.106552
  17. Silveira M., Mayer D.A., Rebelatto E.A. et al. // J. Chem. Thermodynamics. 2023. V. 184. P. 107084. https://doi.org/10.1016/j.jct.2021.107084
  18. Zhi Shen, Qiang Zhao, Hai-Quan Xieet et al. // J. Solid State Chem. 2021. V. 302. P. 122437. https://doi.org/10.1016/j.jssc.2021. P.122437
  19. Romanenko N.R., Faraonov M.A., Mikhailenk M.V. et al. // Dyes Pigments. 2023. V. 218. P. 111471. https://doi.org/10.1016/j.dyepig.2023.111471.
  20. Bao-min Luo, Zhi Shen, Qiang Zhao et al. // Inorg. Chim. Acta. 2021. V. 527. P. 120561. https://doi.org/10.1016/j.ica.2021.120561
  21. Hanuza J., Hermanowicz K., Lisiecki R. et al. // Opt. Mater. 2020. V. 109. P. 110208. https://doi.org/10.1016/j.optmat.2020.110208
  22. Abdolmaleki S., Aliabadi A., Ghadermazi M. // Inorg. Chim. Acta. 2022. V. 542. P. 121152. https://doi.org/10.1016/j.ica.2022.121152
  23. Xiaopeng Zhu, Zhipeng Li, Xiaoxi Ji et al. // J. Inorg. Biochem. 2021. V. 222. P. 111505. https://doi.org/10.1016/j.jinorgbio.2021.111505
  24. Cooper J.A., Anderson B.F., Buckley P.D., Blackwell L.F. // Inorg. Chem. Acta. 1984. V. 91. № 1. P. 1. https://doi.org/10.1016/S0020-1693(00)84211-5
  25. Kegley E.B., Spears J.W., Brown Jr T.T. // J. Dairy Sci. 1996. V. 79. № 7. P. 1278. https://doi.org/10.3168/jds.S0022-0302(96)76482-2
  26. Aboshyan-Sorgho L., Cantuel M., Petoud S. et al. // Coord. Chem. Rev. 2012. V. 256. № 15–16. P. 1644. https://doi.org/10.1016/ j.ccr.2011.12.013
  27. Черкасова Е.В., Пересыпкина Е.В., Вировец А.В., Черкасова Т.Г. // Журн. неорган. химии. 2013. Т. 58. № 9. С.1165 (Cherkasova E.V., Peresypkina E.V., Virovets A.V., Cherkasova T.G. // Russ. J. Inorg. Chem. 2013. V. 58. № 9. P. 1040). https://doi.org/10.1134/S0036023613090076
  28. Черкасова Е.В., Первухина Н.В., Куратьева Н.В., Черкасова Т.Г. // Журн. неорган. химии. 2019. Т. 64. № 3. С. 266 (Cherkasova E.V., Pervukhina N.V., Kuratieva N.V., Cherkasova T.G. // Russ. J. Inorg. Chem. 2019. V. 64. № 3. P. 329). https://doi.org/10.1134/S0036023619030070
  29. Черкасова Е.В., Первухина Н.В., Куратьева Н.В. и др. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 896 (Cherkasova E.V., Pervukhina N.V., Kuratieva N.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 5. P. 626). https://doi.org/10.1134/S003602361805011X
  30. Kay J.L., Moore J.W., Glick M.D. // Inorg. Chem. 1972. V.11. № 11. P. 2818. https://doi.org/10.1021/ic50117a047
  31. Sheldrick G.M. SADABS. Version 2.01. Madison (WI, USA): Bruker AXS Inc., 2004. https://doi.org/10.4236/jssm.2017.103018
  32. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1039/p298700000s1
  33. Ferraris G., Franchini-Angela M. // Acta Crystallogr. B. 1972. V. 28. P. 3572. https://doi.org/10.1107/S0567740873003456
  34. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с (Nakamoto K. Inerared and Raman spectra of inorganic and coordination compounds. New York: John Wiley and Sons, 1986.
  35. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных / Под ред. Тарасевича Б.Н. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 439 с. (Pretch E., Bullman P., Affolter C. Structure determination of organic compounds. Table of spectral data. Berlin; Heideberg: Springer-Verlag, 2000.
  36. Смит A. Прикладная ИК-спектроскопия / Под ред. Тарасевича Б.Н. М.: Мир, 1982. 328 с. (Smith A.L. Applied infrared spectroscopy. New York: John Wiley and Sons, 1979.)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025