Shock initiation of detonation in a mixture of gelled nitromethane with microballoons

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Using a multichannel laser interferometer, a series of experiments with recording of particle velocity profiles have been carried out to determine the dynamics of shock initiation of detonation in the mixtures of nitromethane with microballoons, which are heterogeneous explosives with a controlled charge structure. It is shown that the addition of 5–8 wt.% microballoons to nitromethane reduces the shock wave amplitude required to initiate detonation by almost an order of magnitude. At 8 wt.% of microballoons, depending on the initiation conditions, the realization of both steady Chapman-Jouguet detonation and weak detonation is observed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Shakula

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: utkin@icp.ac.ru
Ресей, Chernogolovka, Moscow region; Dolgoprudnyy, Moscow region

A. Utkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: utkin@icp.ac.ru
Ресей, Chernogolovka, Moscow region

V. Mochalova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
Ресей, Chernogolovka, Moscow region

V. Lavrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
Ресей, Chernogolovka, Moscow region

A. Savchenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
Ресей, Chernogolovka, Moscow region

V. Vilkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: utkin@icp.ac.ru
Ресей, Chernogolovka, Moscow region; Moscow

Әдебиет тізімі

  1. Lee J.J., Frost D.L., Lee J.H.S., Dremin A. // Shock Waves. 1995. V. 5. № 1–2. P. 115.
  2. Presles H.N., Vidal P., Gois J.C., Khasainov B.A., Ermolaev B. S. // Shock Waves. 1995. V. 4. № 6. P. 325.
  3. Satonkina N.P., Ershov A.P., Kashkarov A.O., Rubtsov I.A. // RSC adv. 2020. V. 10. № 30. P. 17620.
  4. Yunoshev A.S., Plastinin A.V., Rafeichik S.I. // Combust. Explos. Shock Waves. 2017. V. 53. P. 738.
  5. Yang M., Ma H., Shen Z. // J. Energ. Mater. 2019. V. 37. № 4. P. 459.
  6. Busby T., Smith J., Sheehan P., Oxley J. // Propellants, Explos., Pyrotech. 2023. V. 48. №8. P. e202200324.
  7. Lavrov V.V., Zubareva A.N., Komissarov P.V. // Russ. J. Phys. Chem. B. 2019. V. 13. № 4. P. 603.
  8. Dattelbaum D.M., Sheffield S.A., Stahl D.B. et al. // Proc. 14th Intern. Detonation Sympos. Arlington, VA, USA: Office of Naval Research, 2010. P. 611.
  9. Engelke R. // Phys. Fluids. 1979. V. 22. № 9. P. 1623.
  10. Khasainov B.A., Ermolaev B.S., Presles H.N. // Tenth Intern. Sympos. on Detonation. Arlington, VA, USA: Office of Naval Research, 1993. P. 33395.
  11. Sabourin J.L., Yetter R.A., Asay B.W. et al. // Propellants, Explos., Pyrotech. 2009. V. 34. № 5. P. 385.
  12. Gois J.C., Campos J., Mendes R. // Proc. Conf. Amer. Phys. Soc. on Shock Compression of Condensed Matter. V. 2. Seattle, Washington: AIP Press, 1996. P. 827.
  13. Mochalova V., Utkin A., Shakula M., Lavrov V. // Phys. Fluids. 2023. V. 35. № 1. P. 017117.
  14. Higgins A., Loiseau J., Mi X.C. // AIP Conf. Proc. 2018. V. 1979. № 1. P. 100019.
  15. Kondrikov B.N., Kozak G.D., Oblomskii V.B., Savkin A.V. // Combust., Explos., Shock Waves. 1987. V. 23. № 2.
  16. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2024. V. 36. № 2. P. 026112.
  17. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2021. V. 33. № 4. P. 046108.
  18. Dremin A.N., Savrov S.D., Trofimov V.S., Shvedov K.K. Detonation Waves in Condensed Media. Moscow: Nauka, 1970.
  19. Chaiken R.F. // J. Chem. Phys. 1960. V. 33. № 3. P. 760.
  20. Sheffield S.F., Weese R.K., Wardell J.F. et al. // Proc. 13th Intern. Deton. Sympos. Arlington, VA, USA: Office of Naval Research, 2006. P. 401.
  21. Bouyer V., Darbord I., Hervé P. et al. // Combust. Flame. 2006. V. 144. № 1–2. P. 139.
  22. Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Shock-Wave Phenomena in Condensed Media. Moscow: “Yanus-K”,1996.
  23. Mader C.L. Numerical modeling of detonations. Los Alamos Series in Basic and Applied Sciences, 1979.
  24. Utkin A., Mochalova V., Zubareva A. et al. // Propellants, Explos., Pyrotech. 2022. V. 47. № 9. e202200051.
  25. Utkin A.V., Mochalova V.M., Rogacheva A.I., Yakushev V.V. // Combust., Explos., Shock Waves. 2017. V. 53. № 2. P. 199.
  26. Wang Z., Xue K., Mi X. // Phys. Fluids. 2024. V. 36. № 2. P. 023336.
  27. Ermolaev B.S., Sulimov A.A. Convective Combustion and Low-Speed Detonation of Porous Energy Materials. Torus Press Moscow. 2017.
  28. Ermolaev B.S. Belyaev A.A., Roman’kov A.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 646.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of the experiments on shock-wave initiation of detonation.

Жүктеу (255KB)
3. Fig. 2. Schematic diagram of shock-wave initiation of detonation of liquid explosives.

Жүктеу (209KB)
4. Fig. 3. Velocity profiles at the boundary with water for nitromethane.

Жүктеу (406KB)
5. Fig. 4. Velocity profiles at the boundary with water for a mixture of nitromethane with 5 wt.% microspheres.

Жүктеу (649KB)
6. Fig. 5. Evolution of the wave profile in t–x coordinates for a mixture of nitromethane with 5 wt.% microspheres.

Жүктеу (245KB)
7. Fig. 6. Velocity profiles at the boundary with water for a mixture of nitromethane with 8 wt.% microspheres.

Жүктеу (602KB)
8. Fig. 7. Evolution of the wave profile in t–x coordinates for a mixture of nitromethane with 8 wt.% microspheres.

Жүктеу (259KB)
9. Fig. 8. Mass velocity profiles at the water interface for a mixture of nitromethane with 8 wt% microspheres at high initiation pressure.

Жүктеу (535KB)

© Russian Academy of Sciences, 2025