Properties of GRBs high-energy gamma-emission according to Fermi/LAT, CORONAS-F/ABC-F and PHOTON/NATALYA-2M data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The AVS-F catalogue contains several tens of GRBs, the one of NATALYA-2M consists of 6 objects (maximum photon energy ∼150 and ∼60 MeV, respectively). The Fermi/LAT catalogue contains more than 200 bursts in the range E > 100 MeV. Different behavior of the prompt emission time profiles is observed in the high and low energy ranges during some events with the presence of a high-energy spectral component. When using the parameter Rt (the ratio of the arrival time of photon with maximum energy to the duration of the burst) that does not require taking into account cosmological duration dilation, the following groups are distinguished among long bursts: (1) for ∼25% of GRBs the duration of high-energy emission is shorter than that of low-energy range; (2) for the remaining ∼75% the opposite situation is observed, but the maximum energy γ is detected during the low-energy prompt emission (2a) or after its completion (2b). The characteristics of GRBs with γ in the sub-TeV region are similar to types 2a and 2b, there is no significant correlation between their maximum energy and redshift.

Sobre autores

I. Arkhangelskaja

NRNU MEPhI

Email: IVArkhangelskaya@mephi.ru
Moscow, Russia

A. Arkhangelskiy

NRNU MEPhI

Moscow, Russia

Bibliografia

  1. Paciesas W.S., Meegan C.A., Pendleton G.N. et al. // Astrophys. J. Suppl. 1999. V. 122. P. 465.
  2. Hurley K., Briggs M.S., Kippen R.M. et al. // Astrophys. J. 2011. V. 196. P. 1.
  3. Dingus B.L., Catelli J.R., and Schneid E.J. // AIP Conf. Proc. 1998. V. 428. P. 349.
  4. Schneid E.J., Bertsch D.L., and Fichtel C.E. // AIP Conf. Proc. 1991. V. 265. P. 38.
  5. Kaneko Y., González M., Preece R. et al. // Astrophys. J. 2008. V. 677. P. 1168.
  6. McArthur B.E., Endl M., Cochran W.D. et al. // ArXiv: astro-ph/0401285. 2004.
  7. Hurley K., Boer M., Niel M. et al. // BAAS. 1994. V. 26. P. 881.
  8. Atkins R., Benbow W., Berley D. et al. // Astrophys. J. 2000. V. 533. P. L119.
  9. Band D., Matteson J., Ford L. et al. // Astrophys. J. 1993. V. 413. P. 281.
  10. https://gammaray.nsstc.nasa.gov/batse/grb/catalog/current/index.html.
  11. González M.M., Dingus B.L., Kaneko Y. et al. // Nature. 2003. V. 424. P. 749.
  12. Arkhangelskaja I.V., and Miroshnichenko L.I. // Proc. 30th ICRC. V. 3. (Merida, 2007). P. 1143.
  13. Архангельская И.В., Архангельский А.И., Афонина И.В. и др. // Изв. РАН. Сер. физ. 2002. Т. 66. №11. С. 1666.
  14. Кузнецов С.Н., Богомолов А.В., Гордеев Ю.П. и др. // Изв. РАН. Сер. физ. 1995. Т. 59. №4. С. 2.
  15. Панков В., Прохин В., Хавенсон Н. // Астрон. вестн. 2006. T. 40. №4. C. 344.
  16. Кузнецов В.Д. // Астрон. вестн. 2005. Т. 39. №6. С. 485.
  17. Архангельская И.В., Архангельский А.И., Котов Ю.Д. и др. // Косм. иссл. 2007. Т. 45. №3. С. 278
  18. Arkhangelskaja I.V., Arkhangelskiy A.I., Glyanenko A.S. et al. // Proc. MG11 (Berlin, 2006). P. 1968.
  19. Архангельская И.В., Зенин А.А., Кирин Д.Ю. и др. // Изв. РАН. Сер. физ. 2013. Т. 77. №11. С. 1600.
  20. Arkhangelskaja I.V. // J. Phys. Conf. Ser. 2016. V. 675. No. 3. Art. No. 032022.
  21. Connaughton V., Briggs M.S., Goldstein A. et al. // Astrophys. J. Suppl. 2015. V. 216. Art. No. 32.
  22. Meegan C., Lichti G., Bhat P.N. et al. // Astrophys. J. 2009. V. 702. P. 791.
  23. Poolakkil S., Preece R., Fletcher C. et al. // Astrophys. J. 2021. V. 913. Art. No. 60.
  24. Atwood W., Abdo A., Ackermann M. et al. // Astrophys. J. 2009. V. 697. P. 1071.
  25. https://www.ssdc.asi.it/grblat.
  26. https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.pl?tablehead=name%3Dfermilgrb&Action=More+Options.
  27. Ajello M., Arimoto M., Axelsson M. et al. // Astrophys. J. 2019. V. 898. Art. No. 52.
  28. Hinds K.R., Oates S.R., Nicholl M. et al. // Month. Not. Royal Astron. Soc. 2032. V. 526. P. 34000.
  29. Архангельская И.В. // Изв. РАН. Сер. физ. 2021. Т. 85. №4. С. 605
  30. Abdalla H., Adam R., Aharonian F. et al. // Nature. 2019. V. 575. P. 464.
  31. The LHAASO Collaboration // Sci. Advances. 2023. V. 9. Art. No. eadj2778.
  32. Котов Ю.Д., Юров В.Н., Лупарь Е.Е. и др. // Астрон. вестн. 2011. Т. 45. №2. С. 83

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025