Allylation of (R)-2,3-O-Cyclohexylideneglyceraldehyde by 2-Substituted Allyl Stannanes. Application in the Synthesis of Natural Compounds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The possibility of diastereoselective allylation of (R)-2,3-O-cyclohexylideneglyceraldehyde with methyl 3-[(tributylstannyl)methyl]but-3-enoate and tributyl[2-(2,2-diethoxyethyl)prop-2-en-1-yl]stannane was studied for the first time. The obtained products were used in the synthesis of valuable building blocks – unsaturated lactones (6R)- and (6S)-6-[(2R)-1,4-dioxaspiro[4.5]dec-2-yl]-4-methyl-5,6-dihydro-2H-pyran-2-one, which found application in the preparation of the C1–C8 fragment of amphidinolides of families C and F, the pheromone of the hemlock moth Lambdina athasaria, in the formal synthesis of the pheromone of the pine moth Lambdina pellucidaria and the coffee leaf miner Leucoptera coffeella.

Texto integral

Acesso é fechado

Sobre autores

Valeria Varanchuk

Belarusian State University

Autor responsável pela correspondência
Email: i.mineyeva@yandex.ru
ORCID ID: 0009-0009-1118-6916
Belarus, 4, Nezavisimost Ave., Minsk, 220030

Irina Mineeva

Institute for Physical Chemical Problems of the Belarusian State University

Email: i.mineyeva@yandex.ru
ORCID ID: 0000-0002-6422-1967
Belarus, 14, Leningradskaya St., Minsk, 220006

Bibliografia

  1. Masiuk U.S., Faletrov Y.V., Kananovich D.G., Mineyeva I.V. J. Org. Chem. 2023, 88, 1, 355–370. doi: 10.1021/acs.joc.2c02382
  2. Keck G.E., Yu T., McLaws M.D. J. Org. Chem. 2005, 70, 7, 2543–2550. doi: 10.1021/jo048308m
  3. Williams D.R., Clark M.P., Emde U., Berliner M.A. Org. Lett. 2000, 2 (19), 3023–3026. doi: 10.1021/ol0063656
  4. Williams D.R, Meyer K.G., Shamim K., Patnaik S. Can. J. Chem. 2004, 82 (2), 120–130. doi: 10.1139/v03-168
  5. Williams D.R., Claeboe C.D., Liang B., Zorn N., Chow N.S.C. Org. Lett. 2012, 14 (15), 3866–3869. doi: 10.1021/ol3015682
  6. Kim S.W., Zhang W., Krische M.J. Acc. Chem. Res. 2017, 50 (9), 2371–2380. doi: 10.1021/acs.accounts.7b00308
  7. Almendros P., Thomas E.J. J. Chem. Soc. Perkin Trans. 1. 1997, 17, 2561–2568. doi: 10.1039/A702257C
  8. Yadav J.S., Reddy B.V.S., Kondaji G., Shyam Sunder Reddy J. Tetrahedron. 2005, 61 (4), 879–882. doi: 10.1016/j.tet.2004.11.029
  9. Zhang X. Synlett. 2008,1, 0065–0068. doi: 10.1055/s-2007-990919
  10. Raju A., Sabitha G. RSC Adv. 2015, 5 (43), 34040–34046. doi: 10.1039/C5RA03693C
  11. Минеева И.В., Кулинкович О.Г. ЖOрХ. 2008, 44 (9), 1277–1282. [Mineeva I.V., Kulinkovich O.G. Russ. J. Org. Chem. 2008, 44 (9), 1261–1266.] doi: 10.1134/S1070428008090029
  12. Минеева И.В. ЖОрХ. 2019, 55 (8), 1203–1214. [Mineeva I.V. Russ. J. Org. Chem. 2019, 55 (8), 1112–1123.] doi: 10.1134/S1070428019080098
  13. Минеева И.В. ЖОрХ. 2020, 56 (6), 885–892. [Mineeva I.V. Russ. J. Org. Chem. 2020, 56 (6), 994–1000.] doi: 10.1134/S1070428020060056
  14. Минеева И.В. ЖОрХ. 2018, 54 (9), 1329–1336. [Mineeva I.V. Russ. J. Org. Chem. 2018, 54 (9), 1341–1349.] doi: 10.1134/S1070428018090130
  15. Минеева И. В. ЖОрХ. 2019, 55 (4), 635–644. [Mineeva I.V. Russ. J. Org. Chem. 2019, 55 (4), 530–539.] doi: 10.1134/S1070428019040195
  16. Kang K.-T., Sung T.M., Kim J.K., Kwon Y.M. Synth. Commun. 1997, 27 (7), 1173–1181. doi: 10.1080/00397919708003354
  17. Oda Y., Matsuo S., Saito K. Tetrahedron Lett. 1992, 33 (1), 97–100. doi: 10.1016/S0040-4039(00)77683-0
  18. Bartoli G., Bosco M., Giuliani A., Marcantoni E., Palmieri A., Petrini M., Sambri L. J. Org. Chem. 2004, 69 (4), 1290–1297. doi: 10.1021/jo035542o
  19. Yadav J.S., Reddy B.V.S., Krishna A.D., Sadasiv K., Janardhana Chary Ch. Chem. Lett. 2003, 32 (3), 248–249. doi: 10.1246/cl.2003.248
  20. Surendra K., Srilakshmi Krishnaveni N., Sridhar R., Srinivas B., Pavan Kumar V., Nageswar Y.V.D., Rama Rao K. Synth. Commun. 2006, 36 (1), 1–5. doi: 10.1080/00397910500328092
  21. Suzuki I., Yamamoto Y. J. Org. Chem. 1993, 58 (18), 4783–4784. doi: 10.1021/jo00070a004
  22. Kim J., Kreller C.R., Greenberg M.M. J. Org. Chem. 2005, 70 (20), 8122–8129. doi: 10.1021/jo0512249
  23. McNeill A.H., Thomas E.J. Synthesis. 1994, 1994 (3), 322–334. doi: 10.1055/s-1994-25469
  24. Hachiya I., Kobayashi S. J. Org. Chem. 1993, 58 (25), 6958–6960. doi: 10.1021/jo00077a009
  25. Masiuk U.S., Mineeva I.V., Kananovich D.G. Symmetry. 2021, 13, 470–457. doi: 10.3390/sym13030470
  26. Carda M., Castillo E., Rodrı́guez S., González F., Marco J.A. Tetrahedron Asymmetry. 2001, 12 (10), 1417–1429. doi: 10.1016/S0957-4166(01)00262-2
  27. Shibata I., Yoshimura N., Yabu M., Baba A. Eur. J. Org. Chem. 2001, 2001, 17, 3207–3211. doi: 10.1002/1099-0690(200109)2001
  28. Li G.L., Zhao G. J. Org. Chem. 2005, 70 (11), 4272–4278. doi: 10.1021/jo050186q
  29. Naruta Y., Ushida S., Maruyama K. Chemistry Lett. 1979, 8 (8), 919–922. doi: 10.1246/cl.1979.919
  30. Jurczuc J., Pikul S., Bauer T. Tetrahedron. 1986, 42 (2), 447–488. doi: 10.1016/S0040-4020(01)87445-7
  31. Масюк В.С., Минеева И.В. ЖОрХ. 2016, 52 (2), 197–204 [Masyuk V.S., Mineeva I.V. Russ. J. Org. Chem. 2016, 52 (2), 178–185.] doi: 10.1134/S1070428016020020
  32. Kubota T., Tsuda M., Kobayashi J. Tetrahedron. 2003, 59 (10), 1613–1625. doi: 10.1016/S0040-4020(03)00142-X
  33. Bates R.H., Shotwell J.B., Roush W.R. Org. Lett. 2008, 10 (19), 4343–4346. doi: 10.1021/ol801852j
  34. Mohapatra D.K., Dasari P., Rahaman H., Pal R. Tetrahedron Lett. 2009, 50 (46), 6276–6279. doi: 10.1016/j.tetlet.2009.09.001
  35. Paudyal M.P., Rath N.P., Spilling C.D. Org. Lett. 2010, 12 (13), 2954–2957. doi: 10.1021/ol100959a
  36. Valot G., Regens C.S., O'Malley D.P., Godineau E., Takikawa H., Fürstner A. Angew. Chem. Int. Ed. 2013, 52 (36), 9534–9538. doi: 10.1002/anie.201301700
  37. Wu D., Forsyth C.J. Org. Lett. 2013, 15 (6), 1178–1181. doi: 10.1021/ol303515h
  38. Valot G., Mailhol D., Regens C.S., O’Malley D.P., Godineau E., Takikawa H., Philipps P., Fürstner A. Chem. Eur. J. 2015, 21 (6), 2398–2408. doi: 10.1002/chem.201405790
  39. Namirembe S., Yan L., Morken J.P. Org. Lett. 2020, 22 (23), 9174–9177. doi: 10.1021/acs.orglett.0c03134
  40. Díaz D.D., Martín V.S. J. Org. Chem. 2000, 65 (23), 7896–7901. doi: 10.1021/jo0055436
  41. Enders D., Schüßeler T. Tetrahedron Lett. 2002, 43 (19), 3467–3470. doi: 10.1016/S0040-4039(02)00595-6
  42. Zarbin P.H.G., Princival J.L., Lima de E.R., Santosdos A.A., Ambrogio B.G., Oliveira de A.R.M. Tetrahedron Lett. 2004, 45 (19), 239–241. doi: 10.1016/j.tetlet.2003.10.183
  43. Shirai Y., Seki M., Mori K. Eur. J. Org. Chem. 1999, 1999, 11, 3139–3145. doi: 10.1002/(SICI)1099-0690(199911)1999:11 <3139::AID-EJOC3139>3.0.CO;2-8
  44. Armarego W.L.F., Chai C.L.L. Purification of laboratory chemicals, 6th ed., Butterworth-Heinemann. 2009, 608.
  45. Kim S.H., Lee H.S., Kim K.H., Kim S.H., Kim J.N. Tetrahedron. 2010, 66 (35), 7065–7076. doi: 10.1016/j.tet.2010.05.103

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1

Baixar (439KB)
3. Scheme 2

Baixar (265KB)
4. Scheme 3

Baixar (184KB)
5. Scheme 4

Baixar (136KB)
6. Scheme 5

Baixar (408KB)
7. Scheme 6

Baixar (369KB)
8. Scheme 7

Baixar (377KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025