Reactivity of Inorganic α-Nucleophiles in Acyl Transfer in Aqueous and Micellar Media. IV. Peroxyhydrolysis of Acylcontaining Compounds in Organized Microheterogenic Systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Micellar effects in perhydrolysis and base catalyzed hydrolysis of 4-nitrophenyl esters of phosphoric, phosphonic and toluolsulphonic acids in organized microheterogeneous systems based on dicationic (Gemini surfactant, GS – AlkIm+–(CH2)3–Im+Alk ∙ 2Br, Alk = C12H25 or C14H29) and monocationic (AlkIm+CH3 ∙ Br, Alk = C12H25 or C14H29) surfactants have been analyzed. The effect of concentration of reagents is the main factor responsible for micellar catalysis. Hydroperoxide α-effect described as second order rate constants ratio for perhydrolysis and base catalyzed hydrolysis remains in organized media, and, depending on surfactant/substrate nature, may amount to ~ 100.

Texto integral

Acesso é fechado

Sobre autores

Maria Turovskaya

Litvinenko Institute of Physical Organic and Coal Chemistry

Email: alla.a.kotenko@yandex.ru
ORCID ID: 0000-0003-4129-0270
Rússia, 70, Rosa Luxemburg St., Donetsk, 283048

Irina Belousova

Litvinenko Institute of Physical Organic and Coal Chemistry

Email: alla.a.kotenko@yandex.ru
ORCID ID: 0000-0003-1534-5506
Rússia, 70, Rosa Luxemburg St., Donetsk, 283048

Nina Razumova

Litvinenko Institute of Physical Organic and Coal Chemistry

Email: alla.a.kotenko@yandex.ru
Rússia, 70, Rosa Luxemburg St., Donetsk, 283048

Tatiana Gaidash

Litvinenko Institute of Physical Organic and Coal Chemistry

Email: alla.a.kotenko@yandex.ru
Rússia, 70, Rosa Luxemburg St., Donetsk, 283048

Tatiana Prokopyeva

Litvinenko Institute of Physical Organic and Coal Chemistry

Email: alla.a.kotenko@yandex.ru
ORCID ID: 0000-0003-0867-7449
Rússia, 70, Rosa Luxemburg St., Donetsk, 283048

Alla Kotenko

Litvinenko Institute of Physical Organic and Coal Chemistry

Autor responsável pela correspondência
Email: alla.a.kotenko@yandex.ru
Rússia, 70, Rosa Luxemburg St., Donetsk, 283048

Vasily Mikhailov

Litvinenko Institute of Physical Organic and Coal Chemistry

Email: alla.a.kotenko@yandex.ru
ORCID ID: 0000-0002-4184-1805
Rússia, 70, Rosa Luxemburg St., Donetsk, 283048

Bibliografia

  1. Белоусова И.А., Зубарева Т.М., Гайдаш Т.С., Разумова Н.Г., Туровская М.К., Панченко Б.В., Прокопьева Т.М., Михайлов В.А. ЖОрХ. 2021, 57, 352–362. [Belousova I.A., Zubareva T.M., Gaidash T.S., Razumova N.G., Turovskaya M.K., Panchenko B.V., Prokop’eva T.M., Mikhailov V.A. Russ. J. Org. Chem. 2021, 57, 338–346.] doi: 10.31857/S0514749221030034
  2. Samiey B., Cheng C.-H., Wu J. J. Chem., 2014, 1–4. doi: 10.1155/2014/908476
  3. Bedford C.T. Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and their Derivatives. In: Organic Reaction Mechanisms 2014, Ed. A.C. Knipe, Wiley, 2018, 87–122. doi: 10.1002/9781118941829.ch2
  4. Kim K., Tsay O.G., Atwood D.A., Churchill D.G. Chem. Rev. 2011, 111, 5345–5403. doi: 10.1021/cr100193y
  5. Duirk S.E., Desetto L.M., Davis G.M. Environ. Sci. Technol. 2009, 43, 2335–2340. doi: 10.1021/es802868y
  6. Deraedt C., Didier A. Coord. Chem. Rev. 2016, 324, 106–122. doi: 10.1016/j.ccr.2016.07.007
  7. Pavez P., Oliva G., Millán D. ACS Sustain. Chem. Eng. 2016, 4, 7023–7031. doi: 10.1021/acssuschemeng.6b01923
  8. Симаненко Ю.С., Попов А.Ф., Прокопьева Т.М., Карпичев Е.А., Савелова В.А., Супрун И.П., Бантон К.А. ЖОрХ. 2002, 38, 1341–1353. [Simanenko Yu.S., Popov A.F., Prokop'eva T.M., Karpichev E.A., Savelova V.A., Suprun I.P., Bunton C.A. Russ. J. Org. Chem. 2002, 38, 1286–1298.] doi: 10.1023/A:1021699628721
  9. Wagner G.W., Sorrick D.C., Procell L.R., Brickhouse M.D., Mcvey I.F., Schwartz L.I. Langmuir. 2007, 23, 1178–1186. doi: 10.1021/la062708i
  10. Yang Yu-Chu. Acc. Chem. Res.1999, 32, 109–115. doi: 10.1021/ar970154s
  11. Talmage S.S., Watson A.P., Hauschild V., Munro N.B., King J. Curr. Org. Chem. 2007, 11, 285–298. doi: 10.2174/138527207779940892
  12. Cassagne T., Cristau H.-J., Delmas G., Desgranges M., Lion C., Magnaud G., Torreilles É., Virieux D. Heteroat. Chem. 2001, 12, 485–490. doi: 10.1002/hc.1074
  13. Wagner G.W., Yang Yu-Chu. Ind. Eng. Chem. Res. 2002, 41, 1925–1928. doi: 10.1021/ie010732f
  14. Yao H., Richardson D.E. J. Am. Chem. Soc. 2003, 125, 6211–6221. doi: 10.1021/ja0274756
  15. Bunton C.A., Gillitt N.D. J. Phys. Org. Chem. 2002, 15, 29–35. doi: 10.1002/poc.442
  16. Зубарева Т.М., Аникеев А.В., Карпичев Е.А., Редько А.Н., Прокопьева Т.М., Попов А.Ф. Теорет. эксперим. хим., 2011, 47, 363–369. [Zubareva T.M., Anikeev A.V., Karpichev E.A., Red'ko A.N., Prokop'eva T.M., Popov A.F. Theor. Exp. Chem. 2011, 47, 377–383.] doi: 10.1007/s11237-012-9230-5
  17. Pisárčik M., Polakovičová M., Markuliak M., Lukáč M., Devínsky F. Molecules. 2019, 24, 1–13. doi: 10.3390/molecules24081481
  18. Zana R. Adv. Coll. Interface Sci. 2002, 97, 205–253. doi: 10.1016/s0001-8686(01)00069-0
  19. Капитанов И.В., Прокопьева Т.М., Садовский Ю.С., Соломойченко Т.Н., Туровская М.К., Пискунова Ж.П., Разумова Н.Г., Попов А.Ф. Укр. хим. ж. 2014, 80, 30–37.
  20. Berezin I.V., Martinek K., Yatsimirskii A.K. Russ. Chem. Rev. 1973, 42, 787–802. doi: 10.1070/rc1973v042n10abeh002744
  21. Bunton C.A. Adv. Coll. Interface Sci. 2006, 123–126, 333–343. doi: 10.1016/j.cis.2006.05.008
  22. Bhattacharya S., Kumar V.P. J. Org. Chem. 2004, 69, 559–562. doi: 10.1021/jo034745+
  23. Wetting S.D., Verrall R.E. J. Coll. Interface Sci. 2001, 235, 310–316. doi: 10.1006/jcis.2000.7348
  24. Wetting S.D., Novak P., Verrall R.E. Langmuir. 2002, 18, 5354–5359. doi: 10.1021/la011782s
  25. Прокопьева Т.М., Белоусова И.А., Туровская М.К., Разумова Н.Г., Панченко Б.В., Михайлов В.А. ЖОрХ. 2018, 54, 1621–1628. [Prokop’eva T.M., Belousova I.A., Turovskaya M.K., Razumova N.G., Panchenko B.V., Mikhailov V.A. Russ. J. Org. Chem. 2018, 54, 1630–1637.] doi: 10.1134/S1070428018110027
  26. Капитанов И.В., Белоусова И.А., Шумейко А.Е., Кострикин М.Л., Прокопьева Т.М., Попов А.Ф. ЖОрХ, 2014, 50, 706–715. [Kapitanov I.V., Belousova I.A., Shumeiko A.E., Kostrikin M.L., Prokop’eva T.M., Popov A.F. Russ. J. Org. Chem. 2014, 50, 694–704.] doi: 10.1134/S1070428014050133
  27. Prokop’eva T.M., Mirgorodskaya A.B., Belousova I.A., Zubareva T.M., Turovskaya M.K., Panchenko B.V., Razumova N.G., Gaidash T.S., Mikhailov V.A. Chem. Safety Sci. 2021, 5, 8–48. doi: 10.25514/CHS.2021.2.20001
  28. Зубарева Т.М., Белоусова И.А., Прокопьева Т.М., Гайдаш Т.С., Разумова Н.Г., Панченко Б.В., Михайлов В.А. ЖОрХ, 2020, 56, 70–77. [Zubareva T.M., Belousova I.A., Prokop’eva T.M., Gaidash T.S., Razumova N.G., Panchenko B.V., Mikhailov V.A. Russ. J. Org. Chem. 2020, 56, 53–58.] doi: 10.1134/S1070428020010091
  29. Pang Q.-H., Zang R.-R., Kang G.-L., Li J.-M., Hu W., Meng X.-G., Zeng X.-C. J. Dispers. Sci. Technol. 2006, 27, 671–675. doi: 10.1080/01932690600660541
  30. Leclercq L., Douyère G., Nardello-Rataj V. Catalysts. 2019, 9, 163. doi: 10.3390/catal9020163
  31. DePuy C. H., Della E. W., Filley J., Grabowski J. J., Bierbaum V. M. J. Am. Chem. Soc. 1983, 105, 2481–2482. doi: 10.1021/ja00346a066
  32. Voloshina A.D., Gumerova S.K., Sapunova А.S., Kulik N.V., Mirgorodskaya A.B., Kotenko A.A., Prokopyeva T.M., Mikhailov V.A., Zakharova L.Ya., Sinyashin O.G. Biochim. Biophys. Acta, Gen. Subjs. 2020, 1864, 129728. doi: 10.1016/j.bbagen.2020.129728

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Brønsted dependence for the NPDEP and NPDEPN reactions with inorganic α-nucleophiles; water; 25°C.

Baixar (169KB)
3. Scheme 1

Baixar (106KB)
4. Scheme 2

Baixar (217KB)
5. Scheme 3

Baixar (116KB)
6. Fig. 2. Dependence of k2,each values (k2,each = kobserved / [HOO–]) on GS 1b concentration for peroxyhydrolysis of acyl-containing substrates; pH 11.0; water; 25°C.

Baixar (140KB)
7. Fig. 3. Dependence of k2 values on GS concentration for peroxyhydrolysis: (a) NPDEPN (compound 2a – o; compound 2b – ♦); (b) NPDEP (compound GS 1a – o; compound GS 1b – ♦); pH 11.0; water; 25°C.

Baixar (232KB)
8. Fig. 4. Dependence of k2 values on GS concentration with varying methylene spacer length (m) for NPOTos peroxyhydrolysis; pH 11.0; water; 25°C.

Baixar (146KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025