Structural evolution of nanoscale ferroelectric Hf0.5Zr0.5O2 layers as a result of their cyclic electrical stimulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Despite the large number of already published articles on the topic of ferroelectric properties of Hf0.5Zr0.5O2 (HZO), this material still attracts enormous attention of the scientific community due to the prospects for creating competitive non-volatile HZO-based memory devices compatible with modern silicon technology. Among the difficulties on the way to creating industrial technology for such devices is the instability of the residual polarization of the ferroelectric during multiple switching by an external electric field. In particular, at the initial stages of such “cycling”, as a rule, a significant increase in residual polarization is observed (the so-called “wake-up” effect), and then, after a certain number of cycles, its decrease (the so-called “fatigue” effect). The question of what processes lead to such instability remains debatable. Using the previously developed methodology for analyzing the phase composition of ultrathin HZO layers by the NEXAFS synchrotron radiation method, it is shown that in capacitors based on TiN/HZO/TiN structures, the “wake-up” effect observed during the first 105 switching cycles is explained by an increase in the relative content of the polar orthorhombic phase in HZO due to a decrease in the content of the “parasitic” tetragonal phase. The obtained results confirm the electric field-stimulated structural phase transition in films as one of the mechanisms explaining the evolution of the functional properties of ferroelectric memory elements based on HZO throughout their service life.

Full Text

Restricted Access

About the authors

L. L. Lev

Moscow Institute of Physics and Technology

Author for correspondence.
Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast

A. S. Konashuk

Institute of Physics, St. Petersburg State University

Email: lev.ll@mipt.ru
Russian Federation, St. Petersburg

R. R. Khakimov

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast

A. G. Chernikova

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast

A. М. Markeev

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast

A. M. Lebedev

Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”

Email: lev.ll@mipt.ru
Russian Federation, Moscow

V. G. Nazin

Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”

Email: lev.ll@mipt.ru
Russian Federation, Moscow

R. G. Chumakov

Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”

Email: lev.ll@mipt.ru
Russian Federation, Moscow

A. V. Zenkevich

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast

References

  1. Robertson J. // Rep. Progress Phys. 2005. V. 69. P. 327. https://doi.org/10.1088/0034-4885/69/2/R02
  2. Kim S. K., Lee S. W., Han J. H., Lee B., Han S., Hwang C. S. // Adv. Funct. Mater. 2010. V 20. P. 2989. https://doi.org/10.1002/adfm.201000599
  3. Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. // Appl. Phys. Lett. 2011. V. 99. P. 102903. https://doi.org/10.1063/1.3634052
  4. Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2012. V. 22. P. 2412. https://doi.org/10.1002/adfm.201103119
  5. Chernikova A.G., Kuzmichev D.S., Negrov D.V., Kozodaev M.G., Polyakov S.N., Markeev A.M. // Appl. Phys. Lett. 2016. V. 108. P. 242905. https://doi.org/10.1063/1.4953787
  6. Hoffmann M., Schroeder U., Schenk T., Shimizu T., Funakubo H., Sakata O., Pohl D., Drescher M., Adelmann C., Materlik R., Kersch A., Mikolajick T. // J. Appl. Phys. 2015. V. 118. P. 072006. https://doi.org/10.1063/1.4927805
  7. Müller J., Schröder U., Böscke T. S., Müller I., Böttger U., Wilde L., Sundqvist J., Lemberger M., Kücher P., Mikolajick T., Frey L. // J. Appl. Phys. 2011. V. 110. P. 114113. https://doi.org/10.1063/1.3667205
  8. Schroeder U., Yurchuk E., Müller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M.I., Kalinin S.V., Mikolajick T. // Jpn. J. Appl. Phys. 2014. V. 53. P. 08LE02. https://doi.org/10.7567/JJAP.53.08LE02
  9. Müller J., Böscke T.S., Schröder U., Mueller S., Bräuhaus D., Böttger U., Frey L., Mikolajick T. // Nano Lett. 2012. V. 12. P. 4318. https://doi.org/10.1021/nl302049k
  10. Hyuk Park M., Joon Kim H., Jin Kim Y., Lee W., Moon T., Seong Hwang C. // Appl. Phys. Lett. 2013. V. 102. P. 242905. https://doi.org/10.1063/1.4811483
  11. Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A. // ACS Appl. Mater. Interfaces. 2016. V. 11. P. 7232. https://doi.org/10.1021/acsami.5b11653
  12. Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
  13. Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. // Appl. Phys. Lett. 2016. V. 109. P. 192903. https://doi.org/10.1063/1.4966219
  14. Hwang C.S. // Adv. Electron. Mater. 2015. V. one. P. 1400056. https://doi.org/10.1002/aelm.201400056
  15. Kim S. K., Popovici M. // MRS Bull. 2018. V. 43. P. 334. https://doi.org/10.1557/mrs.2018.95
  16. Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U. and Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
  17. Hamouda W., Pancotti A., Lubin C., Tortech L., Richter C., Mikolajick T., Schroeder U., Barrett N. // J. Appl. Phys. 2020. V. 127. P. 064105. https://doi.org/10.1063/1.5128502
  18. Chouprik A., Negrov D., Tsymbal E., Zenkevich A. // Nanoscale. 2021. V. 13. P. 11635. https://doi.org/10.1039/D1NR01260F
  19. Koroleva A.A., Chernikova A.G., Zarubin S.S., Korostylev E.V., Khakimov R.R., Zhuk M.Yu., Markeev A.M. // ACS Omega. 2022. V. seven. № 50. P. 47084. https://doi.org/10.1021/acsomega.2c06237
  20. Colla E.L., Taylor D.V., Tagantsev A.K., Setter N. // Appl. Phys. Lett. 1998. V. 72. № 19. P. 2478. https://doi.org/10.1063/1.121386
  21. Stöhr J. NEXAFS Spectroscopy. Vol. 25. Springer Berlin Heidelberg, 1992.
  22. Filatova E.O., Sokolov A.A. // J. Synchrotron Radiat. 2018. V. 25. P. 232. https://doi.org/10.1107/S1600577517016253
  23. Filatova E.O., Sokolov A.A., Kozhevnikov I.V., Taracheva E.Y., Grunsky O.S., Schaefers F., Braun W. // J. Phys. Condens. Matter. 2009. V. 21. P. 185012. https://doi.org/10.1088/0953-8984/21/18/185012
  24. Dmitriyeva A.V., Zarubin S.S., Konashuk A.S., Kasatikov S.A., Popov V.V., Zenkevich A.V. // J. Appl. Phys. 2023. V. 133. P. 054103. https://doi.org/10.1063/5.0131893
  25. Cheema S.S., Kwon D., Shanker N., dos Reis R., Hsu S.-L., Xiao J., Zhang H., Wagner R., Datar A., McCarter M.R., Serrao C.R., Yadav A.K., Karbasian G., Hsu C.-H., Tan A.J., Wang L.-C., Thakare V., Zhang X., Mehta A., Karapetrova E., Chopdekar R.V, Shafer P., Arenholz E., Hu C., Proksch R., Ramesh R., Ciston J., Salahuddin S. // Nature. 2020. V. 580. P. 478. https://doi.org/10.1038/s41586-020-2208-x
  26. Kozodaev M.G., Chernikova A.G., Korostylev E.V., Park M.H., Khakimov R.R., Hwang C.S., Markeev A.M. // 2019. J. Appl. Phys. V. 125. P. 034101. https://doi.org/10.1063/1.5050700
  27. Lebedev A.M., Menshikov K.A., Nazin V.G., Stankevich V.G., Tsetlin M.B., Chumakov R.G. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 1039. https://doi.org/10.1134/S1027451021050335
  28. Henke B.L., Gullikson E.M., Davis J.C. // Atomic Data and Nuclear Data Tables. 1993. V. 54. № 2. P. 181. https://doi.org/10.1006/adnd.1993.1013
  29. Vasić R., Consiglio S., Clark R. D., Tapily K., Sallis S., Chen B., Newby, Jr. D., Medikonda M., Muthinti G.R., Bersch E., Jordan-Sweet J., Lavoie C., Leusink G.J., Diebold A.C. // J. Appl. Phys. V. 2013. 113. P. 234101. https://doi.org/10.1063/1.4811446
  30. Jain A., Ong S. P., Hautier G., Chen W., Davidson Richards W., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K.A. // APL Mater. 2013. V. 1. P. 011002. https://doi.org/10.1063/1.4812323
  31. Cho D.-Y., Jung H.-S., Hwang C. S. // 2010. Phys. Rev. B. V. 82. P. 094104. https://doi.org/10.1103/PhysRevB.82.094104
  32. Martin D., Müller J., Schenk T., Arruda T.M., Kumar A., Strelcov E., Yurchuk E., Müller S., Pohl D., Schröder U., Kalinin S.V., Mikolajick T. // Adv. Mater. 2014. V. 26. P. 8198. https://doi.org/10.1002/adma.201403115
  33. Lederer M., Abdulazhanov S., Olivo R., Lehninger D., Kämpfe T., Seidel K., Eng L. M. // Sci. Rep. 2021. V. 11. P. 22266. https://doi.org/10.1038/s41598-021-01724-2
  34. Lomenzo P.D., Takmeel Q., Zhou C., Fancher C.M., Lambers E., Rudawski N.G., Jones J.L., Moghaddam S., Nishida T. // J. Appl. Phys. 2015. V. 117. P. 134105. https://doi.org/10.1063/1.4916715
  35. Kim H.J., Park M.H., Kim Y.J., Lee Y.H., Moon T., Kim K.D., Hyun S.D., Hwang C.S. // Nanoscale. 2016. V. 8. P. 1383. https://doi.org/10.1039/C5NR05339K
  36. Grimley E.D., Schenk T., Sang X., Pešić M., Schroeder U., Mikolajick T., LeBeau J.M. // Adv. Electron. Mater. 2016. V. 2. P. 1600173. https://doi.org/10.1002/aelm.201600173
  37. Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
  38. Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of layers in samples studied by NEXAFS (a); template for the manufacture of ferroelectric capacitors (b).

Download (40KB)
3. Fig. 2. P–V curves measured by integrating the current responses to a 2.5 kHz triangular voltage sweep for the initial TiN/HZO/TiN capacitor structure (1) and after its “awakening” (2) by applying 105 bipolar trapezoidal pulses with a duration/amplitude of 3 μs/3.0 V (a); dependence of the residual polarization 2Pr on the number of switching pulses (b).

Download (24KB)
4. Fig. 3. OK (1s) absorption spectra in the HZO layer in the initial state (1) and after “awakening” (105 switching pulses), taken at two different points (2) and (3) (a). The same spectra on an enlarged scale (b).

Download (30KB)

Copyright (c) 2025 Russian Academy of Sciences