Photocatalytic activity of Ba-doped BiFeO3 nanoparticles
- Авторлар: Gyulakhmedov R.R.1, Orudzhev F.F.1,2, Khrustalev A.N.3, Sobola D.S.4, Abdurakhmanov М.G.1, Faradzhev S.P.1, Muslimov А.E.5, Kanevsky V.M.5, Rabadanov M.K.1, Alikhanov N.R.1,2
-
Мекемелер:
- Dagestan State University
- Institute of Physics, Dagestan Federal Research Center of the Russian Academy of Sciences
- MIREA — Russian Technological University
- Brno Technical University
- Kurchatov Complex Crystallography and Photonics of the National Research Centre “Kurchatov Institute”
- Шығарылым: № 4 (2025)
- Беттер: 89-100
- Бөлім: Articles
- URL: https://consilium.orscience.ru/1028-0960/article/view/689200
- DOI: https://doi.org/10.31857/S1028096025040138
- EDN: https://elibrary.ru/FCTCJI
- ID: 689200
Дәйексөз келтіру
Аннотация
In this work, nanopowders of the Bi₁–хBaхFeO₃ system (x = 0, 0.10, 0.20) were synthesized by the combustion method of nitrate-organic precursors. The effect of doping bismuth ferrite (BiFeO₃) with barium (Ba) ions on the morphology, crystal structure and photocatalytic activity of the material was studied. X-ray diffraction analysis showed that all samples crystallize into a rhombohedrally distorted perovskite structure with the R3c space group. Doping with barium led to a significant decrease in the crystallite sizes, as well as to a distortion of the crystal lattice. In the case of 20% substitution, the formation of BaCO₃ impurity was observed, which was also confirmed by the analysis of the Raman spectra. It is shown that the introduction of barium leads to the formation of a more porous texture and a significant increase in the specific surface area of the material. The original BiFeO₃ demonstrated an extremely low efficiency of methylene blue decomposition relative to photolysis, while doping with barium led to a significant improvement in the photocatalytic characteristics of the material: in the case of 20% Ba substitution, the decomposition of methylene blue reached 99% in 1 hour.
Негізгі сөздер
Толық мәтін

Авторлар туралы
R. Gyulakhmedov
Dagestan State University
Email: amuslimov@mail.ru
Ресей, Makhachkala
F. Orudzhev
Dagestan State University; Institute of Physics, Dagestan Federal Research Center of the Russian Academy of Sciences
Email: amuslimov@mail.ru
Ресей, Makhachkala; Makhachkala
A. Khrustalev
MIREA — Russian Technological University
Email: amuslimov@mail.ru
Ресей, Moscow
D. Sobola
Brno Technical University
Email: amuslimov@mail.ru
Чехия, Brno
М. Abdurakhmanov
Dagestan State University
Email: amuslimov@mail.ru
Ресей, Makhachkala
Sh. Faradzhev
Dagestan State University
Email: amuslimov@mail.ru
Ресей, Makhachkala
А. Muslimov
Kurchatov Complex Crystallography and Photonics of the National Research Centre “Kurchatov Institute”
Хат алмасуға жауапты Автор.
Email: amuslimov@mail.ru
A.V. Shubnikov Institute of Crystallography
Ресей, MoscowV. Kanevsky
Kurchatov Complex Crystallography and Photonics of the National Research Centre “Kurchatov Institute”
Email: amuslimov@mail.ru
A.V. Shubnikov Institute of Crystallography
Ресей, MoscowM. Rabadanov
Dagestan State University
Email: amuslimov@mail.ru
Ресей, Makhachkala
N.-M. Alikhanov
Dagestan State University; Institute of Physics, Dagestan Federal Research Center of the Russian Academy of Sciences
Email: alihanov.nariman@mail.ru
Ресей, Makhachkala; Makhachkala
Әдебиет тізімі
- Lefebvre O., Moletta R. // Water Res. 2006. V. 40. P. 3671. https://www.doi.org/10.1016/J.WATRES.2006.08.027
- Pirilä M., Saouabe M., Ojala S., Rathnayake B., Drault F., Valtanen A., Huuhtanen M., Brahmi R., Keiski R.L. // Top. Catal. 2015. V. 58. P. 1085. https://www.doi.org/10.1007/S11244-015-0477-7
- Nakata K., Fujishima A. // J. Photochem. Photobiol. C Photochem. Rev. 2012. V. 13. P. 169. https://www.doi.org/10.1016/J.JPHOTOCHEMREV. 2012.06.001
- Mishra M., Chun D.M. // Appl. Catal. A Gen. 2015. V. 498. P. 126. https://www.doi.org/10.1016/J.APCATA.2015.03.023
- Lee G.J., Wu J.J. // Powder Technol. 2017. V. 318. P. 8. https://www.doi.org/10.1016/J.POWTEC.2017.05.022
- Gu X., Li C., Yuan S., Ma M., Qiang Y., Zhu J. // Nanotechnology. 2016. V. 27. P. 402001. https://www.doi.org/10.1088/0957-4484/27/40/402001
- Vavilapalli D.S., Srikanti K., Mannam R., Tiwari B., Mohan Kant M., Rao M.S.R., Singh S. // ACS Omega. 2018. V. 3. P. 16643. https://www.doi.org/10.1021/ACSOMEGA.8B01744
- Mohan S., Subramanian B., Sarveswaran G. // J. Mater. Chem. C. 2014. V. 2. P. 6835. https://www.doi.org/10.1039/C4TC01038H
- Khan H., Lofland S.E., Ahmed J., Ramanujachary K.V., Ahmad T. // Int. J. Hydrogen Energy. 2024. V. 58. P. 717. https://www.doi.org/10.1016/J.IJHYDENE.2024.01.257
- Lacerda L.H.S., de Lazaro S.R. // J. Photochem. Photobiol. A Chem. 2020. V. 400. P. 112656. https://www.doi.org/10.1016/J.JPHOTOCHEM. 2020.112656
- Catalan G., Scott J.F. // Adv. Mater. 2009. V. 21. P. 2463. https://www.doi.org/10.1002/ADMA.200802849
- Han S.H., Kim K.S., Kim H.G., Lee H.G., Kang H.W., Kim J.S., Il Cheon C. // Ceram. Int. 2010. V. 36. P. 1365. https://www.doi.org/10.1016/J.CERAMINT. 2010.01.020
- Soltani T., Entezari M.H. // Chem. Eng. J. 2013. V. 223. P. 145. https://www.doi.org/10.1016/J.CEJ.2013.02.124
- Soltani T., Entezari M.H. // Chem. Eng. J. 2014. V. 251. P. 207. https://www.doi.org/10.1016/J.CEJ.2014.04.021
- Soltani T., Entezari M.H. // Ultrason. Sonochem. 2013. V. 20. P. 1245. https://www.doi.org/10.1016/J.ULTSONCH. 2013.01.012
- Haruna A., Abdulkadir I., Idris S.O. // Heliyon. 2020. V. 6. P. e03237. https://www.doi.org/10.1016/J.HELIYON.2020.E03237
- Nassereddine Y., Benyoussef M., Asbani B., El Marssi M., Jouiad M. // Nanomater. 2024. V. 14 Iss. 1. P. 51. https://www.doi.org/10.3390/NANO14010051
- Huo Y., Jin Y., Zhang Y. // J. Mol. Catal. A Chem. 2010. V. 331. P. 15. https://www.doi.org/10.1016/J.MOLCATA.2010.08.009
- Duan Q., Kong F., Han X., Jiang Y., Liu T., Chang Y., Zhou L., Qin G., Zhang X. // Mater. Res. Bull. 2019. V. 112. P. 104. https://www.doi.org/10.1016/J.MATERRESBULL. 2018.12.012
- Abdul Satar N.S., Adnan R., Lee H.L., Hall S.R., Kobayashi T., Mohamad Kassim M.H., Mohd Kaus N.H. // Ceram. Int. 2019. V. 45. P. 15964. https://www.doi.org/10.1016/J.CERAMINT. 2019.05.105
- Li Z., Dai W., Bai L., Wang Y., Ma D., Peng Y., Deng Z., Xie Y., Liu B., Zhang G., Wang X., Zhu L. // J. Alloys Compd. 2023. V. 968. P. 171863. https://www.doi.org/10.1016/J.JALLCOM.2023. 171863
- Orudzhev F.F., Alikhanov N.M.R., Ramazanov S.M., Sobola D.S., Murtazali R.K., Ismailov E.H., Gasimov R.D., Aliev A.S., Ţălu Ş. // Mol. 2022. V. 27. P. 7029. https://www.doi.org/10.3390/MOLECULES27207029
- Irfan S., Li L., Saleemi A.S., Nan C.W. // J. Mater. Chem. A. 2017. V. 5. P. 11143. https://www.doi.org/10.1039/C7TA01847A
- Yang R., Sun H., Li J., Li Y. // Ceram. Int. 2018. V. 44. P. 14032. https://www.doi.org/10.1016/J.CERAMINT.2018.04.256
- Lu Z., Xie T., Wang L., Li L., Cao C., Mo C. // Opt. Mater. (Amst). 2022. V. 134. P. 113185. https://www.doi.org/10.1016/J.OPTMAT.2022.113185
- Mandal G., Goswami M.N., Mahapatra P.K. // Phys. B Condens. Matter. 2024. V. 695. P. 416475. https://www.doi.org/10.1016/J.PHYSB.2024.416475
- Soltani T., Lee B.K. // J. Hazard. Mater. 2016. V. 316. P. 122. https://www.doi.org/10.1016/J.JHAZMAT.2016.03.052
- Dubey A., Schmitz A., Shvartsman V.V., Bacher G., Lupascu D.C., Castillo M.E. // Nanoscale Adv. 2021. V. 3. P. 5830. https://www.doi.org/10.1039/D1NA00420D
- Li P., Lin Y.-H., Nan C.-W. // J. Appl. Phys. 2011. V. 110. P. 033922. https://www.doi.org/10.1063/1.3622564
- Abdelmadjid K., Gheorghiu F., Abderrahmane B. // Mater. 2022. V. 15. P. 961. https://www.doi.org/10.3390/MA15030961
- Zhang Y., Yang Y., Dong Z., Shen J., Song Q., Wang X., Mao W., Pu Y., Li X. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 15007. https://www.doi.org/10.1007/S10854-020-04064-5
- Alikhanov N.M.R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. // J. Mater. Sci. Mater. Electron. 2021. V. 32. P. 13323. https://www.doi.org/10.1007/S10854-021-05911-9
- Shannon R.D. // Foundations of Crystallography. 1976. V. 32. Iss. 5. P. 751. https://www.doi.org/10.1107/S0567739476001551
- Fukumura H., Harima H., Kisoda K., Tamada M., Noguchi Y., Miyayama M. // J. Magn. Magn. Mater. 2007. V. 310. P. e367. https://www.doi.org/10.1016/J.JMMM.2006.10.282
- Bielecki J., Svedlindh P., Tibebu D.T., Cai S., Eriksson S.G., Börjesson L., Knee C.S. // Phys. Rev. B. 2012. V. 86. P. 184422. https://www.doi.org/10.1103/PHYSREVB.86.184422
- Park T.J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S. // Nano Lett. 2007. V. 7. P. 766. https://www.doi.org/10.1021/NL063039W
- Hermet P., Goffinet M., Kreisel J., Ghosez P. // Phys. Rev. B. 2007. V. 75. P. 220102. https://www.doi.org/10.1103/PHYSREVB.75.220102
- Suresh S., Kathirvel A., Uma Maheswari A., Sivakumar M. // Mater. Res. Exp. 2019. V. 6. P. 115057. https://www.doi.org/10.1088/2053-1591/AB45A8
- Sivakumar A., Dhas S.S.J., Almansour A.I., Kumar R.S., Arumugam N., Perumal K., Dhas S.A.M.B. // Appl. Phys. A Mater. Sci. Process. 2021. V. 127. P. 1. https://www.doi.org/10.1007/S00339-021-05059-7
- Hui J., Hushur A., Hasan A. // Phys. Solid State. 2024. V. 66. P. 318. https://www.doi.org/10.1134/S1063783424600985
- Soltani T., Lee B.K. // J. Mol. Catal. A Chem. 2016. V. 425. P. 199. https://www.doi.org/10.1016/J.MOLCATA.2016. 10.009
- Makhdoom A.R., Akhtar M.J., Rafiq M.A., Hassan M.M. // Ceram. Int. 2012. V. 38. Iss. 5. P. 3829. https://www.doi.org/10.1016/j.ceramint.2012.01.032
- Dhawan A., Sudhaik A., Raizada P., Thakur S., Ahamad T., Thakur P., Singh P., Hussain C.M. // J. Ind. Eng. Chem. 2023. V. 117. P. 1. https://www.doi.org/10.1016/J.JIEC.2022.10.001
- Deng H., Qin C., Pei K., Wu G., Wang M., Ni H., Ye P. // Mater. Chem. Phys. 2021. V. 270. P. 124796. https://www.doi.org/10.1016/J.MATCHEMPHYS. 2021.124796
- Wang D.H., Goh W.C., Ning M., Ong C.K. // Appl. Phys. Lett. 2006. V. 88. P. 212907. https://www.doi.org/10.1063/1.2208266/331724
- Subramanian Y., Ramasamy V., Karthikeyan R.J., Srinivasan, G.R., Arulmozhi, D., Gubendiran R.K., Sriramalu M. // Heliyon. 2019. V. 5. Iss. 6. P. e01831. https://www.doi.org/10.1016/j.heliyon.2019.e01831
- Sun Q., Hong Y., Liu Q., Dong L. Appl. Sur. Sci. 2018. V. 430. P. 399. https://www.doi.org/10.1016/j.apsusc.2017.08.085
- Volnistem E.A., Bini R.D., Silva D.M., Rosso J.M., Dias G.S., Cotica L.F., Santos I.A. // Ceram. Inter. 2020. V. 46. Iss. 11. P. 18768. https://www.doi.org/10.1016/j.ceramint.2020.04.194
- Zhao W., Wang Y., Yang Y., Tang J., Yang Y. // Appl. Catal. B: Environmental. 2012. V. 115. P. 90. https://www.doi.org/10.1016/j.apcatb.2011.12.018
- Alijani H., Abdouss M., Khataei H. // Diamond and Related Materials. 2022. V. 122. P. 108817. https://www.doi.org/10.1016/j.diamond.2021.108817
- Bagherzadeh M., Kaveh R., Ozkar S., Akbayrak S. // Res. Chem. Interm. 2018. V. 44. P. 5953. https://www.doi.org/10.1007/s11164-018-3466-1
- Balasubramanian V., Kalpana S., Anitha R., Senthil T.S. // Mater. Sci. Semiconductor Processing. 2024. V. 182. P. 108732. https://www.doi.org/10.1016/j.mssp.2024.108732
Қосымша файлдар
