Photocatalytic activity of Ba-doped BiFeO3 nanoparticles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In this work, nanopowders of the Bi₁–хBaхFeO₃ system (x = 0, 0.10, 0.20) were synthesized by the combustion method of nitrate-organic precursors. The effect of doping bismuth ferrite (BiFeO₃) with barium (Ba) ions on the morphology, crystal structure and photocatalytic activity of the material was studied. X-ray diffraction analysis showed that all samples crystallize into a rhombohedrally distorted perovskite structure with the R3c space group. Doping with barium led to a significant decrease in the crystallite sizes, as well as to a distortion of the crystal lattice. In the case of 20% substitution, the formation of BaCO₃ impurity was observed, which was also confirmed by the analysis of the Raman spectra. It is shown that the introduction of barium leads to the formation of a more porous texture and a significant increase in the specific surface area of the material. The original BiFeO₃ demonstrated an extremely low efficiency of methylene blue decomposition relative to photolysis, while doping with barium led to a significant improvement in the photocatalytic characteristics of the material: in the case of 20% Ba substitution, the decomposition of methylene blue reached 99% in 1 hour.

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Gyulakhmedov

Dagestan State University

Email: amuslimov@mail.ru
Ресей, Makhachkala

F. Orudzhev

Dagestan State University; Institute of Physics, Dagestan Federal Research Center of the Russian Academy of Sciences

Email: amuslimov@mail.ru
Ресей, Makhachkala; Makhachkala

A. Khrustalev

MIREA — Russian Technological University

Email: amuslimov@mail.ru
Ресей, Moscow

D. Sobola

Brno Technical University

Email: amuslimov@mail.ru
Чехия, Brno

М. Abdurakhmanov

Dagestan State University

Email: amuslimov@mail.ru
Ресей, Makhachkala

Sh. Faradzhev

Dagestan State University

Email: amuslimov@mail.ru
Ресей, Makhachkala

А. Muslimov

Kurchatov Complex Crystallography and Photonics of the National Research Centre “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: amuslimov@mail.ru

A.V. Shubnikov Institute of Crystallography

Ресей, Moscow

V. Kanevsky

Kurchatov Complex Crystallography and Photonics of the National Research Centre “Kurchatov Institute”

Email: amuslimov@mail.ru

A.V. Shubnikov Institute of Crystallography

Ресей, Moscow

M. Rabadanov

Dagestan State University

Email: amuslimov@mail.ru
Ресей, Makhachkala

N.-M. Alikhanov

Dagestan State University; Institute of Physics, Dagestan Federal Research Center of the Russian Academy of Sciences

Email: alihanov.nariman@mail.ru
Ресей, Makhachkala; Makhachkala

Әдебиет тізімі

  1. Lefebvre O., Moletta R. // Water Res. 2006. V. 40. P. 3671. https://www.doi.org/10.1016/J.WATRES.2006.08.027
  2. Pirilä M., Saouabe M., Ojala S., Rathnayake B., Drault F., Valtanen A., Huuhtanen M., Brahmi R., Keiski R.L. // Top. Catal. 2015. V. 58. P. 1085. https://www.doi.org/10.1007/S11244-015-0477-7
  3. Nakata K., Fujishima A. // J. Photochem. Photobiol. C Photochem. Rev. 2012. V. 13. P. 169. https://www.doi.org/10.1016/J.JPHOTOCHEMREV. 2012.06.001
  4. Mishra M., Chun D.M. // Appl. Catal. A Gen. 2015. V. 498. P. 126. https://www.doi.org/10.1016/J.APCATA.2015.03.023
  5. Lee G.J., Wu J.J. // Powder Technol. 2017. V. 318. P. 8. https://www.doi.org/10.1016/J.POWTEC.2017.05.022
  6. Gu X., Li C., Yuan S., Ma M., Qiang Y., Zhu J. // Nanotechnology. 2016. V. 27. P. 402001. https://www.doi.org/10.1088/0957-4484/27/40/402001
  7. Vavilapalli D.S., Srikanti K., Mannam R., Tiwari B., Mohan Kant M., Rao M.S.R., Singh S. // ACS Omega. 2018. V. 3. P. 16643. https://www.doi.org/10.1021/ACSOMEGA.8B01744
  8. Mohan S., Subramanian B., Sarveswaran G. // J. Mater. Chem. C. 2014. V. 2. P. 6835. https://www.doi.org/10.1039/C4TC01038H
  9. Khan H., Lofland S.E., Ahmed J., Ramanujachary K.V., Ahmad T. // Int. J. Hydrogen Energy. 2024. V. 58. P. 717. https://www.doi.org/10.1016/J.IJHYDENE.2024.01.257
  10. Lacerda L.H.S., de Lazaro S.R. // J. Photochem. Photobiol. A Chem. 2020. V. 400. P. 112656. https://www.doi.org/10.1016/J.JPHOTOCHEM. 2020.112656
  11. Catalan G., Scott J.F. // Adv. Mater. 2009. V. 21. P. 2463. https://www.doi.org/10.1002/ADMA.200802849
  12. Han S.H., Kim K.S., Kim H.G., Lee H.G., Kang H.W., Kim J.S., Il Cheon C. // Ceram. Int. 2010. V. 36. P. 1365. https://www.doi.org/10.1016/J.CERAMINT. 2010.01.020
  13. Soltani T., Entezari M.H. // Chem. Eng. J. 2013. V. 223. P. 145. https://www.doi.org/10.1016/J.CEJ.2013.02.124
  14. Soltani T., Entezari M.H. // Chem. Eng. J. 2014. V. 251. P. 207. https://www.doi.org/10.1016/J.CEJ.2014.04.021
  15. Soltani T., Entezari M.H. // Ultrason. Sonochem. 2013. V. 20. P. 1245. https://www.doi.org/10.1016/J.ULTSONCH. 2013.01.012
  16. Haruna A., Abdulkadir I., Idris S.O. // Heliyon. 2020. V. 6. P. e03237. https://www.doi.org/10.1016/J.HELIYON.2020.E03237
  17. Nassereddine Y., Benyoussef M., Asbani B., El Marssi M., Jouiad M. // Nanomater. 2024. V. 14 Iss. 1. P. 51. https://www.doi.org/10.3390/NANO14010051
  18. Huo Y., Jin Y., Zhang Y. // J. Mol. Catal. A Chem. 2010. V. 331. P. 15. https://www.doi.org/10.1016/J.MOLCATA.2010.08.009
  19. Duan Q., Kong F., Han X., Jiang Y., Liu T., Chang Y., Zhou L., Qin G., Zhang X. // Mater. Res. Bull. 2019. V. 112. P. 104. https://www.doi.org/10.1016/J.MATERRESBULL. 2018.12.012
  20. Abdul Satar N.S., Adnan R., Lee H.L., Hall S.R., Kobayashi T., Mohamad Kassim M.H., Mohd Kaus N.H. // Ceram. Int. 2019. V. 45. P. 15964. https://www.doi.org/10.1016/J.CERAMINT. 2019.05.105
  21. Li Z., Dai W., Bai L., Wang Y., Ma D., Peng Y., Deng Z., Xie Y., Liu B., Zhang G., Wang X., Zhu L. // J. Alloys Compd. 2023. V. 968. P. 171863. https://www.doi.org/10.1016/J.JALLCOM.2023. 171863
  22. Orudzhev F.F., Alikhanov N.M.R., Ramazanov S.M., Sobola D.S., Murtazali R.K., Ismailov E.H., Gasimov R.D., Aliev A.S., Ţălu Ş. // Mol. 2022. V. 27. P. 7029. https://www.doi.org/10.3390/MOLECULES27207029
  23. Irfan S., Li L., Saleemi A.S., Nan C.W. // J. Mater. Chem. A. 2017. V. 5. P. 11143. https://www.doi.org/10.1039/C7TA01847A
  24. Yang R., Sun H., Li J., Li Y. // Ceram. Int. 2018. V. 44. P. 14032. https://www.doi.org/10.1016/J.CERAMINT.2018.04.256
  25. Lu Z., Xie T., Wang L., Li L., Cao C., Mo C. // Opt. Mater. (Amst). 2022. V. 134. P. 113185. https://www.doi.org/10.1016/J.OPTMAT.2022.113185
  26. Mandal G., Goswami M.N., Mahapatra P.K. // Phys. B Condens. Matter. 2024. V. 695. P. 416475. https://www.doi.org/10.1016/J.PHYSB.2024.416475
  27. Soltani T., Lee B.K. // J. Hazard. Mater. 2016. V. 316. P. 122. https://www.doi.org/10.1016/J.JHAZMAT.2016.03.052
  28. Dubey A., Schmitz A., Shvartsman V.V., Bacher G., Lupascu D.C., Castillo M.E. // Nanoscale Adv. 2021. V. 3. P. 5830. https://www.doi.org/10.1039/D1NA00420D
  29. Li P., Lin Y.-H., Nan C.-W. // J. Appl. Phys. 2011. V. 110. P. 033922. https://www.doi.org/10.1063/1.3622564
  30. Abdelmadjid K., Gheorghiu F., Abderrahmane B. // Mater. 2022. V. 15. P. 961. https://www.doi.org/10.3390/MA15030961
  31. Zhang Y., Yang Y., Dong Z., Shen J., Song Q., Wang X., Mao W., Pu Y., Li X. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 15007. https://www.doi.org/10.1007/S10854-020-04064-5
  32. Alikhanov N.M.R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. // J. Mater. Sci. Mater. Electron. 2021. V. 32. P. 13323. https://www.doi.org/10.1007/S10854-021-05911-9
  33. Shannon R.D. // Foundations of Crystallography. 1976. V. 32. Iss. 5. P. 751. https://www.doi.org/10.1107/S0567739476001551
  34. Fukumura H., Harima H., Kisoda K., Tamada M., Noguchi Y., Miyayama M. // J. Magn. Magn. Mater. 2007. V. 310. P. e367. https://www.doi.org/10.1016/J.JMMM.2006.10.282
  35. Bielecki J., Svedlindh P., Tibebu D.T., Cai S., Eriksson S.G., Börjesson L., Knee C.S. // Phys. Rev. B. 2012. V. 86. P. 184422. https://www.doi.org/10.1103/PHYSREVB.86.184422
  36. Park T.J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S. // Nano Lett. 2007. V. 7. P. 766. https://www.doi.org/10.1021/NL063039W
  37. Hermet P., Goffinet M., Kreisel J., Ghosez P. // Phys. Rev. B. 2007. V. 75. P. 220102. https://www.doi.org/10.1103/PHYSREVB.75.220102
  38. Suresh S., Kathirvel A., Uma Maheswari A., Sivakumar M. // Mater. Res. Exp. 2019. V. 6. P. 115057. https://www.doi.org/10.1088/2053-1591/AB45A8
  39. Sivakumar A., Dhas S.S.J., Almansour A.I., Kumar R.S., Arumugam N., Perumal K., Dhas S.A.M.B. // Appl. Phys. A Mater. Sci. Process. 2021. V. 127. P. 1. https://www.doi.org/10.1007/S00339-021-05059-7
  40. Hui J., Hushur A., Hasan A. // Phys. Solid State. 2024. V. 66. P. 318. https://www.doi.org/10.1134/S1063783424600985
  41. Soltani T., Lee B.K. // J. Mol. Catal. A Chem. 2016. V. 425. P. 199. https://www.doi.org/10.1016/J.MOLCATA.2016. 10.009
  42. Makhdoom A.R., Akhtar M.J., Rafiq M.A., Hassan M.M. // Ceram. Int. 2012. V. 38. Iss. 5. P. 3829. https://www.doi.org/10.1016/j.ceramint.2012.01.032
  43. Dhawan A., Sudhaik A., Raizada P., Thakur S., Ahamad T., Thakur P., Singh P., Hussain C.M. // J. Ind. Eng. Chem. 2023. V. 117. P. 1. https://www.doi.org/10.1016/J.JIEC.2022.10.001
  44. Deng H., Qin C., Pei K., Wu G., Wang M., Ni H., Ye P. // Mater. Chem. Phys. 2021. V. 270. P. 124796. https://www.doi.org/10.1016/J.MATCHEMPHYS. 2021.124796
  45. Wang D.H., Goh W.C., Ning M., Ong C.K. // Appl. Phys. Lett. 2006. V. 88. P. 212907. https://www.doi.org/10.1063/1.2208266/331724
  46. Subramanian Y., Ramasamy V., Karthikeyan R.J., Srinivasan, G.R., Arulmozhi, D., Gubendiran R.K., Sriramalu M. // Heliyon. 2019. V. 5. Iss. 6. P. e01831. https://www.doi.org/10.1016/j.heliyon.2019.e01831
  47. Sun Q., Hong Y., Liu Q., Dong L. Appl. Sur. Sci. 2018. V. 430. P. 399. https://www.doi.org/10.1016/j.apsusc.2017.08.085
  48. Volnistem E.A., Bini R.D., Silva D.M., Rosso J.M., Dias G.S., Cotica L.F., Santos I.A. // Ceram. Inter. 2020. V. 46. Iss. 11. P. 18768. https://www.doi.org/10.1016/j.ceramint.2020.04.194
  49. Zhao W., Wang Y., Yang Y., Tang J., Yang Y. // Appl. Catal. B: Environmental. 2012. V. 115. P. 90. https://www.doi.org/10.1016/j.apcatb.2011.12.018
  50. Alijani H., Abdouss M., Khataei H. // Diamond and Related Materials. 2022. V. 122. P. 108817. https://www.doi.org/10.1016/j.diamond.2021.108817
  51. Bagherzadeh M., Kaveh R., Ozkar S., Akbayrak S. // Res. Chem. Interm. 2018. V. 44. P. 5953. https://www.doi.org/10.1007/s11164-018-3466-1
  52. Balasubramanian V., Kalpana S., Anitha R., Senthil T.S. // Mater. Sci. Semiconductor Processing. 2024. V. 182. P. 108732. https://www.doi.org/10.1016/j.mssp.2024.108732

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the stages of synthesis of Bi1−xBaxFeO3 nanoparticles (x = 0, 0.10, 0.20) by the combustion method.

Жүктеу (32KB)
3. Fig. 2. X-ray diffraction patterns of Bi1–xBaxFeO3 (x = 0, 0.1, 0.2) samples (a); enlarged image of the X-ray diffraction pattern near the 012 reflection (b).

Жүктеу (29KB)
4. Fig. 3. SEM images of Bi1−xBaxFeO3 nanoparticles (x = 0, 0.10, 0.20).

Жүктеу (37KB)
5. Fig. 4. EDS spectra of BiFeO3 (1); Bi0.9Ba0.1FeO3 (2); Bi0.8Ba0.2FeO3 (3) samples (a) and the distribution of Bi (b), Fe (c), Ba (d), O (d) atoms in the 10 μm region of the Bi0.8Ba0.2FeO3 sample.

Жүктеу (81KB)
6. Fig. 5. Raman spectra of BiFeO3 (a), Bi0.9Ba0.1FeO3 (b) and Bi0.8Ba0.2FeO3 (c) at room temperature.

Жүктеу (31KB)
7. Fig. 6. High-resolution XPS spectra of O1s of BiFeO3 (1); Bi0.9Ba0.1FeO3 (2); Bi0.8Ba0.2FeO3 (3) samples.

Жүктеу (30KB)
8. Fig. 7. Adsorption curves (a) and photocatalytic decomposition efficiency (b) (numbers indicate the value after 60 min) of methylene blue using BiFeO3 (1), Bi0.9Ba0.1FeO3 (2), Bi0.8Ba0.2FeO3 (3) as a catalyst and without a catalyst (4); the decomposition spectrum of methylene blue taking into account adsorption by the Bi0.8Ba0.2FeO3 sample for 0 (1); 60 min (2) and upon irradiation with light in the range from UV to visible for 60 min (3) (c); kinetic curves under irradiation with light in the range from UV to visible using BiFeO3 (1), Bi0.9Ba0.1FeO3 (2), Bi0.8Ba0.2FeO3 (3) particles as a catalyst for the decomposition and without a catalyst (4), the decomposition rate constants were 0.021, 0.060, 0.077 and 0.020 min–1, respectively (g).

Жүктеу (58KB)

© Russian Academy of Sciences, 2025