Study of SiO2 films obtained by PECVD and doped with Zn

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The results of studying silicon oxide films obtained by plasma enhanced chemical vapor deposition on Si substrates are presented. They were implanted with 64Zn+ ions with an energy of 50 keV (dose 7 × 1016 cm–2) and then annealed in oxygen atmosphere at elevated temperatures. It has been found that after implantation, zinc is distributed in the SiO2 film according to the normal law with a maximum of about 40 nm. After implantation, zinc is in the silicon oxide film both in the metallic phase (closer to the film surface) and in the oxidized state (in the film depth). After annealing up to 800°C, the zinc profile shifts into the film depth; in this case, the zinc is in the film only in the oxidized state. At high temperatures (over 800°C), the zinc profile shifts toward the film surface.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Privezentsev

National Research Centre “Kurchatov Institute” — Scientific Research Institute for System Analysis

Хат алмасуға жауапты Автор.
Email: v.privezentsev@mail.ru
Ресей, Moscow

A. Firsov

National Research Centre “Kurchatov Institute” — Scientific Research Institute for System Analysis

Email: v.privezentsev@mail.ru
Ресей, Moscow

V. Kulikauskas

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Ресей, Moscow

V. Zatekin

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Ресей, Moscow

E. Kirilenko

Institute of Nanotechnology of Microelectronics RAS

Email: v.privezentsev@mail.ru
Ресей, Moscow

A. Goryachev

Institute of Nanotechnology of Microelectronics RAS

Email: v.privezentsev@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Старостин В.В. Материалы и методы нанотехнологий. М.: БИНОМ, 2015. 434 с.
  2. Litton С.W., Collins T.C., Reynolds D.S. Zinc Oxide Material for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011.
  3. Neshataeva E., Kümmell T., Bacher G., Ebbers A. // Appl. Phys. Lett. 2009. V. 94. P. 091115. https://doi.org/10.1063/1.3093675
  4. Chu S., Olmedo M., Yang Zh. et al. // Appl. Phys. Lett. 2008. V. 93. P. 181106. https://doi.org/10.1063/1.3012579
  5. Smestad G.P., Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752. https: j.chem.wisc.edu.
  6. Li C., Yang Y., Sun X.W., Lei W., Zhang X.B., Wang B.P., Wang J.X., Tay B.K., Ye J.D., Lo G.Q., Kwong D.L. // Nanotechnology. 2007. V. 18. P. 135604. https://doi.org/10.1088/0957-4484/18/13/135604
  7. Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. V. 30. 43. P. 1801187. https://doi.org/10.1002/adma.201801187
  8. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., ohd Bakhori S.K., Hasan H., Mohamad D. // Nano-Micro Lett. 2015. V. 7. P. 219. https://doi.org/10.1007/s40820-015-0040-x
  9. Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Eng. Technol. 2014. V. 3. P. 8601. www.ijirset.com.
  10. Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://doi.org/10.1103/PhysRevB.79.205206
  11. Ilyas N., Li C., Wang J., Jiang X., Fu H., Liu F., Gu D., Jiang Y., Li W. // J. Phys. Chem. Lett. 2022. V. 13 (3). P. 884. https://doi.org/10.1021/acs.jpclett.1c03912
  12. Qin F., Zhang Y., Guo Z. et al. // Mater. Adv. 2024. V. 5. P. 4209. https://doi.org/10.1039/d3ma01142
  13. Okulich E.V., Okulich V.I., Tetelbaum D.I., Mikhaylov A.N. // Mater. Lett. 2022. V. 310. P. 131494. https://doi.org/10.1016/j.matlet.2021.131494
  14. Mehonic A., Gerard T., Kenyon A.J. // Appl. Phys. Lett. 2017. V. 111. P. 233502. https://doi.org/10.1063/1.5009069
  15. Chang K.C., Tsai T.M., Chang T.C., Wu H.H., Chen J.H., Syu Y.E., Chang G.W., Chu T.J., Liu G.R., Su Y.T., Chen M.C., Pan J.H., Chen J.Y., Tung C.W., Huang H.C., Tai Y.H., Gan D.S., Sze S.M. // IEEE Eelecron. Dev. Lett. 2013. V. 34 (9). P. 399. https://doi.org/10.1109/LED.2013.2241725
  16. Privezentsev V.V., Kulikauskas V.S., Zatekin V.V., Kiselev D.A., Voronova M.I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16 (3). P. 402. https://doi.org/ 10.1134/S1027451022030314
  17. Hofmann S. Auger- and X-Ray Photoelectron Spectroscopy in Material Science. Berlin Heidelberg: Springer–Verlag, 2013.
  18. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии / Ред. Бриггс Д., Сих М.П. М.: Мир, 1987. 600 с.
  19. Монахова Ю.Б., Муштакова С.П. // Журнал аналитической химии. 2012. Т. 67. Вып. 12. С. 1044.
  20. SIMNRA code. https://mam.home.ipp.mpg.de/
  21. Ziegler J.F., Biersack J.P. SRIM 2013 (http://www.srim.org).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental POR spectra: a – after zinc implantation (1) and after annealing at 600 (2) and 800°C (3); b – zinc zone after implantation (1), after annealing at temperatures of 600 (2) and 800°C (3).

Жүктеу (29KB)
3. Fig. 2. Calculated profiles of Zn after implantation (1) and after annealing at 600 (2) and 800°C (3).

Жүктеу (12KB)
4. Fig. 3. Profiles of Si (1), O (2), Zn (3) after implantation (a) and after annealing at 800°C (b).

Жүктеу (26KB)
5. Fig. 4. Auger spectrum of zinc after implantation at a depth of 30 (a) and 55 nm (b): 1 — experiment and decomposition of curve 1 into components Zn (2) and ZnO (3).

Жүктеу (29KB)
6. Fig. 5. Auger spectrum of zinc after annealing at 700°C at a depth of 60 nm: 1 - experimental spectrum; components 2 - Zn and 3 - ZnO.

Жүктеу (16KB)

© Russian Academy of Sciences, 2025