On optimal conditions for generation of terahertz surface plasmon-polaritons by the end-fire coupling technique

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The results of an experimental study of the generation of surface plasmon-polaritons in the terahertz range are presented. The end-fire coupling technique has been used for generation, when the beam is focused on the metal–dielectric interface. It has been found that at normal beam incidence, the efficiency of plasmon-polaritons generation is maximum, and the half-width of the dependence of the generation efficiency on the angle of radiation incidence in the sample plane is 6.0° ± 0.5°. It is shown that the generation efficiency has a maximum at a certain shift of the center of the incident beam relative to the metal–dielectric interface. The half-width of this maximum is 590 ± 50 μm, which is consistent with theory within the error limits.

Texto integral

Acesso é fechado

Sobre autores

P. Nikitin

Scientific and Technological Centre of Unique Instrumentation RAS

Autor responsável pela correspondência
Email: nikitin.pavel.a@gmail.com
Rússia, Moscow

V. Gerasimov

Novosibirsk State University; Budker Institute of Nuclear Physics SB RAS

Email: v.v.gerasimov3@gmail.com
Rússia, Novosibirsk; Novosibirsk

A. Lemzyakov

Budker Institute of Nuclear Physics SB RAS; Shared Research Center “Siberian Ring Photon Source”, Boreskov Institute of Catalysis SB RAS

Email: nikitin.pavel.a@gmail.com
Rússia, Novosibirsk; Novosibirsk

Bibliografia

  1. Maier S.A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007. 224 p. https://doi.org/10.1007/0-387-37825-1
  2. Liang Y., Koshelev K., Zhang F., Lin H., Lin S., Wu J., Jia B., Kivshar Y. // Nano Lett. 2020. V. 20. № 9. P. 6351. https://doi.org/10.1021/acs.nanolett.0c01752
  3. Peale R.E., Figueiredo P.N., Phelps J.R., Chan K.C., Abdolvand R., Smith E.M., Vangala S. // Infrared Phys. Tech. 2022. V. 125. P. 104253. https://doi.org/10.1016/j.infrared.2022.104253
  4. Gallerano G.P., Biedron S. // Proc. of the 2004 FEL Conf. 2004. P. 216. https://accelconf.web.cern.ch/f04/papers/FRBIS02/FRBIS02.PDF
  5. Lewis R.A. // J. Phys. D. 2019. V. 52. № 43. P. 433001. https://doi.org/10.1088/1361-6463/ab31d5
  6. Zhang X., Xu Q., Xia L., Li Y., Gu J., Tian Z., Ouyang C., Han J., Zhang W. // Adv. Photon. 2020. V. 2. № 1. P. 014001. https://doi.org/10.1117/1.AP.2.1.014001
  7. Begley D.L., Alexander R.W., Ward C.A., Miller R., Bell R.J. // Surf. Sci. 1979. V. 81. № 2. P. 245. https://doi.org/10.1016/0039-6028(79)90515-6
  8. Suarez I., Ferrando A., Marques-Hueso J., Diez A., Abargues R., Rodriguez-Canto P., Martinez-Pastor J. // Nanophotonics. 2017. V. 6. № 5. P. 1109. https://doi.org/10.1515/nanoph-2016-0166
  9. Koteles E.S., McNeill W.H. // Int. J. Infrared Millim. Waves. 1981. V. 2. P. 361. https://doi.org/10.1007/BF01007040
  10. Steijn K.W., Seymour R.J., Stegeman G.I. // Appl. Phys. Lett. 1986. V. 49. P. 1151. https://doi.org/10.1063/1.97450
  11. Huang W., Yang W., Yin Sh., Zhang W. // Results Phys. 2021. V. 31. P. 104985. https://doi.org/10.1016/j.rinp.2021.104985
  12. Korobko D.A., Zolotovskii I.O., Moiseev S.G., Kadochkin A.S., Svetukhin V.V. // J. Opt. 2021. V. 24. № 1. P. 015002. https://doi.org/10.1088/2040-8986/ac3c4f
  13. Ebadi S.M., Ortegren J. // OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). 2020. P. NoTh3C.5. https://doi.org/10.1364/NOMA.2020.NoTh3C.5
  14. Sun W., He Q., Sun S., Zhou L. // Light Sci. Appl. 2016. V. 5. P. e16003. https://doi.org/10.1038/lsa.2016.3
  15. Mackay T.G., Faryad M. // Plasmonics. 2022. V. 17. P. 753. https://doi.org/10.1007/s11468-021-01568-6
  16. Vinogradov A.P., Dorofeenko A.V., Pukhov A.A., Lisyansky A.A. // Phys. Rev. B. 2018. V. 97. № 23. P. 235407. https://doi.org/10.1103/PhysRevB.97.235407
  17. Martl M., Darmo J., Unterrainer K., Gornik E. // J. Opt. Soc. Am. B. 2009 V. 26. № 3. P. 554. https://doi.org/10.1364/JOSAB.26.000554
  18. Farhat M., Guenneau S., Bagci H. // Phys. Rev. Lett. 2013. V. 111. № 23. P. 237404. https://doi.org/10.1103/PhysRevLett.111.237404
  19. Stegeman G.I., Wallis R.F., Maradudin A.A. // Opt. Lett. 1983. V. 8. № 7. P. 386. https://doi.org/10.1364/OL.8.000386
  20. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A. // Photonics. 2023. V. 10. № 8. P. 917. https://doi.org/10.3390/photonics10080917
  21. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A. Kotelnikov I.A. // Appl. Sci. 2023. V. 13. № 13. P. 7898. https://doi.org/10.3390/app13137898
  22. Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. // J. Opt. Soc. Am. B. 2016. V. 33. № 11. P. 2196. https://doi.org/10.1364/JOSAB.33.002196
  23. Kukotenko V.D., Gerasimov V.V. // Proc. SPIE. 2023. V. 12776. Р. 1277607. https://doi.org/10.1117/12.2687472
  24. Handbook of Optical Constants of Solids. Vol. 1. / Ed. Palik E.D. Cambridge, MA, USA: Academic Press, 2016. 824 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of generation of plasmon-polaritons by the edge diffraction method: a – side view; b – top view.

Baixar (14KB)
3. Fig. 2. Theoretical dependence of the efficiency of generation of plasmon-polaritons in the THz range on the position of the central part of the incident radiation beam.

Baixar (11KB)
4. Fig. 3. Schematic diagram of the experimental setup: 1 — THz radiation beam; 2 — flat mirror; 3 — cylindrical mirror; 4 — sample; 5 — screen; 6 — radiation receiver.

Baixar (7KB)
5. Fig. 4. Experimental dependence of the efficiency of generation of plasmon-polaritons in the THz range on the position of the central part of the incident radiation beam.

Baixar (14KB)
6. Fig. 5. Experimental dependence of the efficiency of generation of plasmon-polaritons in the THz range on the angle of incidence of the radiation beam.

Baixar (14KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025