КЛИНИЧЕСКИЙ СЛУЧАЙ

BY-NC-SA 4.0

Лекарственно-индуцированный синдром Бругада: клинический случай

Ю.Н. Федулаев 1 , И.В. Макарова $^{\square 1}$, Ф.Г. Магомедова 1 , С.Э. Аракелов 2,3 , И.Ю. Титова 2

¹ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России (Пироговский Университет), Москва, Россия;

²ГБУЗ «Городская клиническая больница им. В.П. Демихова» Департамента здравоохранения г. Москвы, Москва, Россия; ³ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы», Москва, Россия

Аннотация

Синдром Бругада (СБ) – генетически обусловленный клинико-электрокардиографический синдром, относящийся к группе каналопатий и ассоциированный с повышенным риском внезапной сердечной смерти. Краеугольный камень в диагностике СБ – спонтанный Бругада-паттерн 1-го типа на электрокардиограмме (ЭКГ), включающий подъем точки Ј≥2 мм, сводчатую элевацию сегмента *ST* и инверсию зубца *T* в правых грудных отведениях. Аналогичные ЭКГ-изменения, индуцированные антиаритмическим препаратом, выступают в качестве критерия для постановки диагноза при сочетании с документированным эпизодом полиморфной желудочковой тахикардии или фибрилляции желудочков, аритмогенного синкопа, ночного агонального дыхания, отягощенной в отношении СБ или внезапной смерти наследственностью. В статье представлен клинический случай лекарственно-ассоциированного Бругада-паттерна 1-го типа на фоне приема антиаритмического препарата 1С-класса этацизина у пациентки без дополнительных диагностических критериев СБ, с отрицательными результатами генетического исследования и регрессом ЭКГ-изменений после его отмены.

Ключевые слова: синдром Бругада, блокада правой ножки пучка Гиса, ЭКГ, антиаритмический препарат, этацизин, SCN5A **Для цитирования:** Федулаев Ю.Н., Макарова И.В., Магомедова Ф.Г., Аракелов С.Э., Титова И.Ю. Лекарственно-индуцированный синдром Бругада: клинический случай. *Consilium Medicum*. 2025;27(10):589–593. DOI: 10.26442/20751753.2025.10.203407

CASE REPORT

Drug-induced Brugada syndrome: Case report

Yuri N. Fedulaev¹, Irina V. Makarova^{™1}, Fatima G. Magomedova¹, Sergey E. Arakelov²,³, Irina Yu. Titova²

¹Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia;

²Demikhov City Clinical Hospital, Moscow, Russia;

³Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia

Abstract

Brugada syndrome (BrS) is an inherited clinical and electrocardiographic syndrome, related to ion channelopathies and associated with an increased risk of sudden cardiac death. The cornerstone in diagnosis remains a spontaneous type 1 Brugada-pattern on the electrocardiogram (ECG), including J point elevation of \geq 2 mm, coved-type ST segment elevation and T wave inversion in right precordial leads. Similar ECG changes, induced by antiarrhythmic therapy, should be considered as diagnostic when combined with a documented polymorphic ventricular tachycardia or ventricular fibrillation episode, arrhythmogenic syncope, nocturnal agonal breathing or a family history of sudden cardiac death or BrS. The article represents a clinical case of drug-induced type 1 Brugada-pattern in the settings of antiarrhytmic treatment using 1C class sodium channel blocker ethacizine in a female without additional BrS criteria, with negative genetic testing results and the ECG normalization after drug withdrawal.

Keywords: Brugada syndrome, right bundle branch block, ECG, antiarrhythmic drug, ethacizine, SCN5A

For citation: Fedulaev YuN, Makarova IV, Magomedova FG, Arakelov SE, Titova IYu. Drug-induced Brugada syndrome: Case report. Consilium Medicum. 2025;27(10):589–593. DOI: 10.26442/20751753.2025.10.203407

Информация об авторах / Information about the authors

[™]Макарова Ирина Владимировна – канд. мед. наук, доц. каф. факультетской терапии Института материнства и детства ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» (Пироговский Университет). E-mail: irina-makarova93@mail.ru; SPIN-код: 3525-1775

Федулаев Юрий Николаевич — д-р мед. наук, проф., зав. каф. факультетской терапии Института материнства и детства ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» (Пироговский Университет). SPIN-код: 2764-7250

Магомедова Фатима Гимбатовна – студентка V курса Института материнства и детства ФГАОУ ВО «РНИМУ им. Н. И. Пирогова» (Пироговский Университет)

Аракелов Сергей Эрнестович – д-р мед. наук, глав. врач ГБУЗ «ГКБ им. В.П. Демихова», зав. каф. семейной медицины с курсом паллиативной медицинской помощи фак-та непрерывного медицинского образования ФГАОУ ВО РУДН. SPIN-код: 4970-8419

Титова Ирина Юрьевна – зам. глав. врача по медицинской части ГБУЗ «ГКБ им. В.П. Демихова». SPIN-код: 1901-8102

□Irina V. Makarova – Cand. Sci. (Med.), Pirogov Russian National Research Medical University (Pirogov University).

E-mail: irina-makarova93@mail.ru; ORCID: 0000-0001-5127-1300; Author ID: 57211044069; Researcher ID: ABE-1969-2020

Yuri N. Fedulaev – D. Sci. (Med.), Prof., Pirogov Russian National Research Medical University (Pirogov University). ORCID: 0000-0003-4040-2971; Author ID: 6503940014; Researcher ID: K-7917-2018

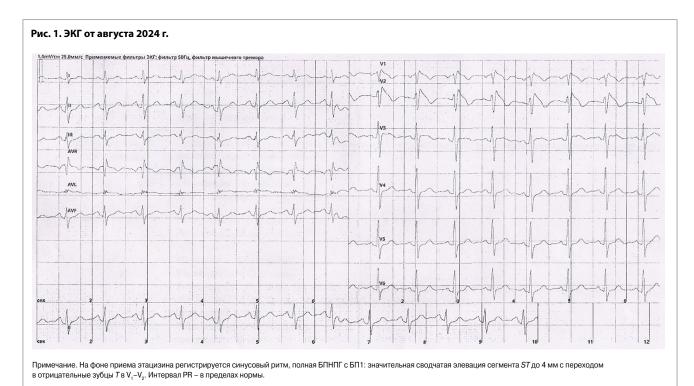
Fatima G. Magomedova – Student, Pirogov Russian National Research Medical University (Pirogov University). ORCID: 0009-0000-8745-7991

Seregey E. Arakelov – D. Sci. (Med.), Demikhov City Clinical Hospital, Peoples' Friendship University of Russia named after Patrice Lumumba. ORCID: 0000-0003-3911-8543; Author ID: 935931

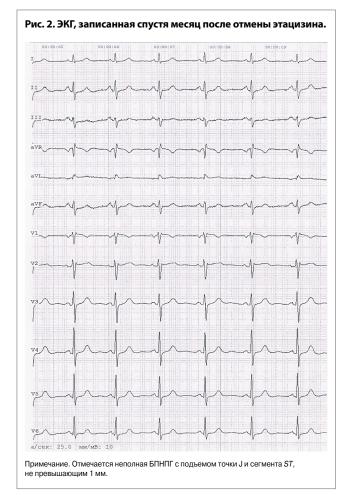
Irina Yu. Titova – Deputy Chief doctor, Demikhov City Clinical Hospital. ORCID: 0000-0001-7056-0634; Author ID: 984024

Введение

Синдром Бругада (СБ) – редкий генетически обусловленный клинико-электрокардиографический синдром, преимущественно наследуемый по аутосомно-доминантному типу с неполной пенетрантностью. В настоящее время у пациентов с СБ описано более 500 патогенных вариантов более чем в 20 генах, однако наиболее часто (до 1/3 случаев) мутации локализованы в гене SCN5A, кодирующем α-субъединицу потенциал-зависимого натриевого канала Nav1.5, и приводят к нарушению фазы 0 (деполяризации) потенциала действия кардиомиоцитов. Реже мутации затрагивают гены, ответственные за регуляцию токов кальция и калия через мембраны клеток сердечной мышцы. В результате нарушенного ионного транспорта уменьшается продолжительность потенциала действия в субэпикардиальных слоях миокарда выходного тракта правого желудочка, что потенциально может рассматриваться в качестве пускового механизма к развитию жизнеугрожающих аритмий.


СБ описан Педро и Жозепом Бругада в 1992 г. у 8 пациентов (6 мужчин и 2 женщины в возрасте от 2 до 53 лет) без структурной патологии сердца, перенесших внезапную сердечную смерть (ВСС) по механизму полиморфной желудочковой тахикардии (ЖТ). Участников исследования объединяли сходные изменения на электрокардиограммах (ЭКГ), включавшие блокаду правой ножки пучка Гиса (БПНПГ) с нормальной продолжительностью интервала *QT* и сохраняющимся подъемом сегмента *ST* в отведениях с V_1 по V_2 – V_3 . В ходе программированной стимуляции желудочков, проведенной 7 пациентам, у 4 воспроизведена устойчивая полиморфная ЖТ, сменившаяся фибрилляцией желудочков, в оставшихся случаях отмечалась неустойчивая ЖТ. Спустя несколько лет открыта генетическая природа синдрома, названного в честь братьев Бругада [1-3]. Распространенность СБ составляет в среднем 5 на 10 тыс. населения, среди мужчин частота встречаемости в 8-10 раз выше, чем среди женщин. Дебют клинических проявлений чаще приходится на возраст 40 лет и старше. Клиническая картина варьирует от бессимптомного течения (в большинстве случаев) до развития синкопе, судорожного синдрома, ночного агонального дыхания, ассоциированных с желудочковыми и наджелудочковыми тахиаритмиями [4].

Краеугольный камень в диагностике СБ – обнаружение спонтанного ЭКГ-паттерна 1-го типа, включающего подъем точки $J \ge 2$ мм (0,2 мВ), сводчатую элевацию сегмента STи инверсию зубца T в отведении V_1 и/или V_2 , позиционированном в четвертом, третьем или втором межреберье. Аналогичные изменения, индуцированные антиаритмическим препаратом, выступают в качестве диагностического критерия у лиц без органической патологии сердца в сочетании с документированным эпизодом полиморфной ЖТ или фибрилляции желудочков, аритмогенным синкопе, ночным агональным дыханием, отягощенным в контексте СБ или ВСС наследственным анамнезом (класс рекомендаций IIa). Важная роль отводится молекулярно-генетическому тестированию с поиском мутаций в гене SCN5A (класс рекомендаций I). В то же время целесообразность программируемой стимуляции желудочков, а также протокол ее проведения остаются предметом для дискуссий [3, 5, 6].


В настоящей статье представлен случай Бругада-паттерна 1-го типа (БП1), ассоциированного с приемом антиаритмического средства 1С-класса этацизина (диэтиламинопропионилэтоксикарбониламинофенотиазина гидрохлорида), у пациентки без дополнительных диагностических критериев СБ, с отрицательными результатами генетического исследования и регрессом ЭКГ-изменений после отмены препарата.

Клинический случай

Женщина, 66 лет, госпитализирована в плановом порядке в кардиологическое отделение многопрофильного стационара осенью 2024 г. с жалобами на перебои в работе сердца, головную боль, нестабильность артериального давления (АД). Синкопальные состояния отрицает. Из анамнеза заболевания известно, что перебои и учащенное сердцебиение периодически беспокоят на протяжении последних 5 лет. На серии холтеровских мониторирований ЭКГ отмечалась частая наджелудочковая и желудочковая экстрасистолия (максимально до 30 тыс. экстрасистол в сутки), по поводу которой принимала этацизин в дозе 50 мг 2 раза в сутки. Эпизоды ЖТ не регистрировались. На ЭКГ покоя от августа 2024 г. впервые выявлена полная БПНПГ с БП1 – значительная сводчатая элевация сегмен-

© CONSILIUM MEDICUM, 2025.

та ST до 4 мм с переходом в отрицательные зубцы T в отведениях V_1 – V_2 (рис. 1), в связи с чем отменена антиаритмическая терапия, рекомендовано дообследование.

Также в анамнезе: артериальная гипертензия на протяжении 15 лет с максимальными значениями АД до 200/90 мм рт. ст., гипотензивную терапию на постоянной основе не получает. Принимает гиполипидемическую терапию (аторвастатин 40 мг) по поводу гиперхолестеринемии IIa-типа по Фредриксону, атеросклероза брахиоцефальных артерий со стенозированием устья правой внутренней сонной артерии до 50%. Пациентка сообщает об отсутствии вредных привычек (в том числе приема наркотических, психоактивных веществ), регулярном разнообразном питании. Повседневную физическую активность переносит удовлетворительно. Наследственный анамнез не отягощен: случаи ранней сердечно-сосудистой смерти у родственников 1-й линии родства отрицает, старший брат (75 лет) не имеет диагностированных сердечно-сосудистых заболеваний. Детей нет. Диагноз СБ в семье ранее не выставлялся.

Результаты физикального исследования – без особенностей. На серии ЭКГ, полученных в ходе госпитализации (спустя месяц после отмены этацизина), отмечалась синусовая нормокардия, блокада передней ветви левой ножки, неполная БПНПГ с незначительным подъемом точки J и сегмента ST, не превышающим 1 мм (рис. 2). БП1 более не регистрировался.

По данным холтеровского мониторирования ЭКГ регистрировался синусовый ритм, эпизоды синусовой тахикардии в часы бодрствования, редкие суправентрикулярные экстрасистолы (в том числе с аберрантным внутрижелудочковым проведением), феномен укороченного интервала *PQ*. Желудочковые нарушения ритма не наблюдались. На протяжении всей записи отмечалась неполная БПНПГ без ЭКГ-признаков СБ. Представленные пациенткой про-

токолы ранее выполненных мониторирований ЭКГ позволили отметить существенное уменьшение суточного количества экстрасистол и на момент госпитализации воздержаться от назначения антиаритмической терапии.

По результатам суточного мониторирования средние значения систолического и диастолического АД находились в пределах нормы. Данные эхокардиографии продемонстрировали нормальные размеры камер, сократимость и геометрию левого желудочка, недостаточность аортального клапана 1-й степени, митрального клапана 2-й степени, умеренное повышение систолического давления в легочной артерии – до 39 мм рт. ст.

Коронароангиография, выполненная в рамках настоящей госпитализации, позволила исключить значимое атеросклеротическое поражение коронарного русла.

В лабораторных данных сохранялась дислипидемия Па (общий холестерин – 5,9 ммоль/л, липопротеины низкой плотности – 3 ммоль/л), что потребовало коррекции гиполипидемической терапии. Показатели электролитного состава крови (калий, натрий, кальций) были в пределах референсных значений. Молекулярно-генетическое тестирование не выявило патогенных мутаций в гене SCN5A.

Программируемая стимуляция желудочков не проводилась. Пациентке рекомендовано диспансерное наблюдение терапевтом, кардиологом с динамическим ЭКГ-контролем, избегание приема препаратов и сильнодействующих средств, провоцирующих БП1, активная жаропонижающая терапия при развитии лихорадочных состояний. На протяжении 6 мес бругадоподобные изменения не рецидивировали.

Обсуждение

ЭКГ-проявления СБ зачастую преходящие (так называемый интермиттирующий БП1) и включают БПНПГ, элевацию сегмента *ST* различной формы и выраженности, удлинение интервала *PR* [3]. На сегодняшний день описано множество проаритмогенных факторов при СБ. Среди них важная роль отводится лекарственным агентам: антиаритмическим препаратам І класса (за исключением хинидина), блокаторам кальциевых каналов, β-блокаторам, антидепрессантам, антипсихотическим, противосудорожным средствам, анестетикам и др. Лихорадка, эндокринологические заболевания, электролитный дисбаланс, злоупотребление алкоголем, энергетическими напитками, переедание, прием наркотических веществ также рассматриваются в качестве провоцирующих факторов [5, 7, 8].

В случае нашей пациентки БП1 индуцирован приемом антиаритмического средства, относящегося к 1С-классу. Ha сайте https://www.brugadadrugs.org представлен список лекарств, не рекомендованных для назначения при СБ в связи с возможным проаритмогенным эффектом. Перечень включает препарат этацизин с присвоением класса рекомендаций IIb. Мы провели поиск ранее опубликованных статей по базам данных Medline/PubMed, eLibrary и CyberLeninka по следующим ключевым словам: «Бругада», «этацизин», Brugada, ethacizin, ethacizine, etacizin (дата последнего обращения: 30.03.2025). Найдено 3 публикации с описанием 3 клинических случаев (мужчина 49 лет, две женщины в возрасте 60 и 61 года) БП1 на фоне терапии этацизином [9-11]. В работе Ю.Н. Сазоновой содержится упоминание об еще одной пациентке 56 лет с желудочковой экстрасистолией и бругадоподобными изменениями на ЭКГ, вызванными приемом этацизина, случай доложен на Конгрессе Российского общества холтеровского мониторирования и неинвазивной электрофизиологии в 2008 г. [11, 12].

В целом ведущей причиной для обращения за медицинской помощью оказались перебои в работе сердца, связанные с частой желудочковой и наджелудочковой экстрасистолией и потребовавшие назначения этацизина в

суточной дозе 75-150 мг (в одном случае доза не указана). У 2 пациентов ранее не отмечалось синкопальных состояний, семейный анамнез не отягощен по сердечно-сосудистым заболеваниям, в то время как оставшаяся пациентка сообщила об эпизоде ЖТ в анамнезе и отягощенной наследственности в отношении ишемической болезни сердца. Интермиттирующий БП1 манифестировал на 3-и сутки, через 1 и 2 нед после приема этацизина и регрессировал через 1-7 сут после его отмены [9-11]. В 2 случаях потребовалось проведение дифференциальной диагностики с острым инфарктом миокарда, несмотря на отсутствие клинической симптоматики (в первую очередь, болей в грудной клетке) и регистрацию характерных для СБ изменений на ЭКГ, что может свидетельствовать о низкой осведомленности клиницистов в отношении этого синдрома [9, 11]. У одного пациента выполнена программируемая электростимуляция, по результатам которой (индукция стойкой ЖТ с переходом в фибрилляцию желудочков) принято решение об имплантации кардиовертера-дефибриллятора [9]. В 2 других случаях произведена замена антиаритмического препарата (с этацизина на соталол и амиодарон соответственно) с удовлетворительным клиническим эффектом [10, 11].

В соответствии с алгоритмом ведения пациентов с СБ, отображенном в клинических рекомендациях, мы оценили вспомогательные ЭКГ-маркеры, ассоциированные с риском ВСС: фрагментацию QRS-комплексов, выраженный зубец S в отведении V_1 и паттерн ранней реполяризации желудочков по нижней и/или боковой стенке левого желудочка. Из представленных параметров на первоначальной ЭКГ нашей пациентки выявлен глубокий (\geq 0,1 мВ) и уширенный (\geq 40 мс) S в отведении V_1 , ранее описанный в качестве предиктора развития жизнеугрожающих аритмий [3, 6, 13].

Определенный интерес представляют данные проспективного регистра PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE), в соответствии с которым независимыми маркерами повышенного риска аритмических событий при СБ выступили фрагментация QRS в правых грудных отведениях, короткий рефрактерный период желудочков, спонтанный (а не лекарственно-индуцированный) бругадоподобный паттерн 1-го типа и синкопе, а не индукция ЖТ в ходе программируемой стимуляции [14]. Анализ 8 исследований, суммарно включивших 1312 пациентов, напротив, продемонстрировал 2-кратное повышение риска ВСС или срабатывания кардиовертера-дефибриллятора у лиц с индуцируемой ЖТ. Среди них наименьшая вероятность неблагоприятных событий отмечалась при лекарственно-индуцированном (а не спонтанном) генезе, а также при отсутствии в анамнезе синкопальных состояний [15]. Действующие рекомендации ESC предлагают рассматривать вопрос о целесообразности индукции желудочковых аритмий у бессимптомных лиц со спонтанным БП1 (класс рекомендаций IIb, уровень доказательности В) [6].

Приняв во внимание неотягощенный наследственный анамнез, отсутствие синкопе и эпизодов ЖТ, медикаментозно-ассоциированный характер изменений на ЭКГ с регрессом после отмены препарата, отрицательные результаты генетического тестирования и лишь один из потенциально неблагоприятных ЭКГ-маркеров (глубокий зубец S в отведении V_1), мы решили в настоящее время воздержаться от проведения программируемой стимуляции желудочков. Несмотря на отсутствие патогенных мутаций в гене SCN5A, пациентке выставлен диагноз СБ, что допускается рекомендациями ESC 2022 г. по ведению лиц с желудочковыми аритмиями и профилактике ВСС-типа (класс рекомендаций IIb, уровень доказательности C) ввиду доказанно низкой (до 20%) частоты генетической верификации [6].

Заключение

Представленный клинический случай подчеркивает важность своевременной идентификации лекарственно-ассоциированного СБ с незамедлительной отменой препарата, послужившего причиной развития БП1, а также необходимость оценки клиническо-анамнестических и инструментальных предикторов жизнеугрожающих аритмий и осуществления динамического контроля. Вопросы стратификации риска ВСС, оправданность рутинного генетического тестирования при медикаментозном генезе СБ, показания для направления на программируемую электростимуляцию желудочков и оптимальные подходы к лечению у такой категории пациентов остаются предметом дальнейшего изучения.

Раскрытие интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Disclosure of interest. The authors declare that they have no competing interests.

Вклад авторов. Ю.Н. Федулаев – концептуализация, методология, надзор; И.В. Макарова – визуализация, написание – первоначальный вариант, формальный анализ, исследование, курация данных; Ф.Г. Магомедова – написание – первоначальный вариант, исследование; С.Э. Аракелов – управление проектом, ресурсы, И.Ю. Титова – написание – рецензирование и редактирование.

Authors' contribution. Yu.N. Fedulaev – conceptualization, methodology, supervision; I.V. Makarova – visualization, writing – original draft preparation, formal analysis, investigation, data curation; F.G. Magomedova – writing – original draft preparation, investigation; S.E. Arakelov – project administration, resources; I.Yu. Titova – writing – review and editing.

Источник финансирования. Авторы декларируют отсутствие внешнего финансирования для проведения исследования и публикации статьи.

Funding source. The authors declare that there is no external funding for the exploration and analysis work.

Информированное согласие на публикацию. Пациент подписал форму добровольного информированного согласия на публикацию медицинской информации.

Consent for publication. Written consent was obtained from the patient for publication of relevant medical information and all of accompanying images within the manuscript.

Литература/References

- Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. J Am Coll Cardiol. 1992;20(6):1391-6. DOI:10.1016/0735-1097(92)90253-j
- Xu T, Wang S, Wang J, Xing J. Brugada syndrome update. Front Physiol. 2025;15:1520008. DOI:10.3389/fnhvs.2024.1520008
- Бокерия Л.А., Сергуладзе С.Ю., Проничева И.В., и др. Синдром Бругада. Клинические рекомендации Ассоциации сердечно-сосудистых хирургов России, 2020. Режим доступа: http://racvs. ru/clinic/files/2020/brugada.pdf. Ссылка активна на 20.02.2025 [Bokeriya LA, Serguladze SYu, Pronicheva IV, et al. Brugada syndrome. Clinical guidelines of Russian Association of cardiovascular surgeons, 2020. Available at: http://racvs.ru/clinic/files/2020/brugada.pdf. Accessed: 20.02.2025 (in Russian)].
- Brugada J, Campuzano O, Arbelo E, et al. Present Status of Brugada Syndrome: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(9):1046-59. DOI:10.1016/j.jacc.2018.06.037
- Antzelevitch C, Yan GX, Ackerman MJ, et al. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm. 2016;13(10):e295-324. DOI:10.1016/j.hrthm.2016.05.024
- Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40):3997-4126. DOI:10.1093/eurheartj/ehac262
- Polovina MM, Vukicevic M, Banko B, et al. Brugada syndrome: A general cardiologist's perspective. Eur J Intern Med. 2017;44:19-27. DOI:10.1016/j.ejim.2017.06.019

- Tome G, Freitas J. Induced Brugada syndrome: Possible sources of arrhythmogenesis. Rev Port Cardiol. 2017;36(12):945-56. DOI:10.1016/j.repc.2017.06.015
- Атьков О.Ю., Лазаренко Г.Н., Лабарткава Е.З., и др. Синдром Бругада, индуцированный этацизином, у пациента с длительно существующей суправентрикулярной экстрасистолией. Клиническая медицина. 2015;93(10):71-3 [Atkov OY, Lazarenko GN, Labartkava EZ, et al. Etacisininduced Brugada syndrome in a patient with long-standing supraventricular extrasystole. Klin Med (Mosk). 2015;93(10):71-3 (in Russian)].
- Макаров Л.М., Комолятова В.Н. Появление электрокардиографических признаков синдрома Бругада на фоне терапии антиаритмическим препаратом 1 С класса этацизином. Кардиология. 2011;51(4):93-5 [Makarov LM, Komoliatova VN. Appearance of ECG signs of the Brugada syndrome during therapy with class 1C antiarrhythmic drug ethacizine. Kardiologiia. 2011;51(4):93-5 (in Russian)].
- 11. Сазонова Ю.Н. Манифестация электрокардиографических признаков синдрома Бругада на фоне терапии антиаритмическим препаратом Іс класса этацизином. *Медицинский вестник Юга России*. 2021;12(4):62-6 [Sazonova YuN. Manifestation of electrocardiographic signs of the Brugada syndrome in the setting of therapy with class Ic antiarrhythmic drug ethacizine. *Medical Herald of the South of Russia*. 2021;12(4):62-6 (in Russian)]. DOI:10.21886/2219-8075-2021-12-4-62-66
- 12. Цыганков Е.В., Донецкая О.Л., Горюхина А.А. Изменения ЭКГ на фоне приема этацизина: тезисы доклада. Материалы 9-го Конгресса Российского общества холтеровского мониторирования и неинвазивной электрофизиологии (РОХМиНЭ) и 2-го Конгресса «Клиническая электрокардиология», 2008. Режим доступа: https://rohmine.org/userfiles/ufiles/otchet_rokhmine_2008.pdf. Ссылка активна на 20.02.2025 [Tsygankov EV, Donetskaya OL, Goryukhina AA. Changes on ECG during ethacizine intake. Proceedings of the 9th Congress of the Russian Society of Holter Monitoring and Non-invasive Electrophysiology (ROHMiNE) and the 2nd Congress "Clinical Electrocardiology", 2008. Available at: https://rohmine.org/userfiles/ufiles/otchet_rokhmine_2008.pdf. Accessed: 20.02.2025 (in Russian)].
- Calo L, Giustetto C, Martino A, et al. A New Electrocardiographic Marker of Sudden Death in Brugada Syndrome: The S-Wave in Lead I. J Am Coll Cardiol. 2016;67(12):1427-40. DOI:10.1016/j.jacc.2016.01.024
- Priori SG, Gasparini M, Napolitano C, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed Electrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012;59(1):37-45. DOI:10.1016/j.jacc.2011.08.064
- Sroubek J, Probst V, Mazzanti A, et al. Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome: A Pooled Analysis. Circulation. 2016;133(7):622-30. DOI:10.1161/CIRCULATIONAHA.115.017885

Статья поступила в редакцию / The article received: 09.04.2025 Статья принята к печати / The article approved for publication: 27.10.2025

OMNIDOCTOR.RU