Structure, phase composition and properties of amorphous soft magnetic Fe–Co–Si–B–P tapes
- 作者: Semin A.P.1, Gromov V.E.1, Ivanov Y.F.2, Panin S.V.3, Mogilnikov P.S.4, Litovchenko I.Y.3, Selivanov I.D.1
-
隶属关系:
- Siberian State Industrial University
- Institute of High-Current Electronics, Siberian Branch of the Russian Academy of Sciences
- Institute of Strength Physics and Materials Science
- Central Research Institute of Ferrous Metallurgy named after I.P. Bardin
- 期: 卷 522, 编号 1 (2025)
- 页面: 74–80
- 栏目: ТЕХНИЧЕСКИЕ НАУКИ
- URL: https://consilium.orscience.ru/2686-7400/article/view/689527
- DOI: https://doi.org/10.31857/S2686740025030127
- EDN: https://elibrary.ru/PWGOCP
- ID: 689527
如何引用文章
详细
The analysis of structural and phase states, mechanical and magnetic properties of amorphous FeCoBSi and FeCoBSiP alloys obtained by spinning is performed. The distribution of the elemental composition is traced and the alloy stratification by silicon and boron is noted. It is shown that the experimentally determined values of saturation induction (1.7–1.8 T) and coercive force (18–20 A/m) are practically independent of changes in the composition of the tapes in the studied range of element content. The values of ultimate strength (~162 MPa) and elongation before failure (~0.23%) indicate low plasticity of the studied tapes. However, the value of the elastic modulus was high at 81.5 MPa.
全文:

作者简介
A. Semin
Siberian State Industrial University
编辑信件的主要联系方式.
Email: syomin53@bk.com
俄罗斯联邦, Novokuznetsk
V. Gromov
Siberian State Industrial University
Email: gromov@physics.sibsiu.ru
俄罗斯联邦, Novokuznetsk
Yu. Ivanov
Institute of High-Current Electronics, Siberian Branch of the Russian Academy of Sciences
Email: yufi55@mail.ru
俄罗斯联邦, Tomsk
S. Panin
Institute of Strength Physics and Materials Science
Email: paninsergey71@mail.ru
俄罗斯联邦, Tomsk
P. Mogilnikov
Central Research Institute of Ferrous Metallurgy named after I.P. Bardin
Email: pavel_mog@mail.ru
俄罗斯联邦, Moscow
I. Litovchenko
Institute of Strength Physics and Materials Science
Email: litovchenko@spti.tsu.ru
俄罗斯联邦, Tomsk
I. Selivanov
Siberian State Industrial University
Email: ilyselivanov@mail.ru
俄罗斯联邦, Novokuznetsk
参考
- Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes // Adv. Eng. Mater. 2004. V. 6. P. 299–303.
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sc. Eng. A. 2004. V. 375. P. 213–218.
- Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. High-entropy alloy: Challenges and prospects // Mater. Today. 2016. V. 19. P. 349–362.
- Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Mater. 2017. V. 122. P. 448–511.
- Li Y.H., Zhang W., Qi T.L. New soft magnetic Fe25Co25Ni25(P, C, B)25 high entropy bulk metallic glasses with large supercooled liquid region // J. Alloy. Compd. 2017. V. 693. P. 25–31.
- Wang C., He A., Wang A., Pang J., Liang X., Li Q., Chang, C., Qiu K., Wang X. Effect of P on glass forming ability, magnetic properties and oxidation behavior of FeSiBP amorphous alloys // Intermetallics. 2017. V. 84. P. 142–147.
- Li P., Wang A., Liu C.T. A ductile high entropy alloy with attractive magnetic properties // J. Alloy. Compd. 2017. V. 694. P. 55–60.
- Zhang Y., Zuo T., Cheng Y., Liaw P.K. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability // Sci. Rep. 2013. V. 3. 1455.
- Karimi M.A., Shamanian M., Enayati M.H., Adamzadeh M., Imani M. Fabrication of a novel magnetic high entropy alloy with desirable mechanical properties by mechanical alloying and spark plasma sintering // J. Manul. Process. 2022. V. 84. P. 859–870.
- Li C., Li Q., Li M., Chang C., Li H., Dong Y., Sun Y. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties // J. Alloy. Compd. 2019. V. 791. P. 947–951.
- Vaidya M., Armugam S., Kashyap S., Murty B.S. Amorphization in equiatomic high entropy alloys // J. Non-Cryst. Solids. 2015. V. 413. P. 8–14.
- Shu F.Y., Liu S., Zhao H.Y., He W.X., Sui S.H., Zhang J., He P., Xu B.S. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder // J. Alloy. Compd. 2017. V. 731. P. 662–666.
- Кекало И.Б. Процессы структурной релаксации и физические свойства аморфных сплавов в 2 т. Т. 2.: монография. М.: Изд. дом МИСиС, 2016. 650 с.
- Семин А.П., Громов В.Е., Иванов Ю.Ф., Панин С.В., Колубаев Е.А., Литовченко И.Ю., Боровский С.В. Структура и свойства ленты магнитомягкого сплава Fe–Co–Ni–Si–B, изготовленной методом спиннингования // Физическая мезомеханика. 2024. Т. 27. № 5. С. 63–70.
- Gromov V.E., Potekaev A.I., Semin A.P., Kolubaev E.A., Mogilnikov P.S., Ivanov Yu.F., Panin S.V., Borovsky S.V., Litovchenko I.Yu., Kornienkov B.A. Structure and properties of a ribbon from FeCoNiSiB high-entropy alloy // Russian Physics J. 2024. V. 67. № 6. P. 756–764.
- Han Y., Kong F.L., Han F.F., Inoue A., Zhu S.L., Shalaan E., Al-Marzouki F. New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application // Intermetallics. 2016. V. 76. P. 18–25. https://doi.org/10.1016/j.intermet.2016.05.011
- Roy R.K., Murugaiyan P., Panda A.K., Mitra A. Compositional optimization of high induction (>1.7 T) FeCo-based nanocomposite alloys with enhancement of thermo-physical and magnetic properties // Physica B: Condensed Matter. 2019. V. 566. P. 71–76. https://doi.org/10.1016/j.physb.2019.04.034
- Wang C., He A., Wang A., Pang J., Liang X., Li Q., Wang X. Effect of P on glass forming ability, magnetic properties and oxidation behavior of FeSiBP amorphous alloys // Intermetallics. 2017. V. 84. P. 142–147. https://doi.org/10.1016/j.intermet.2016.12.024
- Hou L., Yang W., Luo Q., Fan X., Liu H., Shen B. High Bs of FePBCCu nanocrystalline alloys with excellent soft-magnetic properties // J. Non-Crystalline Solids. 2020. V. 530. 119800. https://doi.org/10.1016/j.jnoncrysol.2019.119800
补充文件
