CRYSTALLIZATION OF THE SILICOALUMOPHOSPHATE MOLECULAR SIEVE SAPO-5 FROM REACTION GELS WITH DIFFERENT SiO2/Al2O3 RATIOS AND ITS APPLICATION IN HYDROISOMERIZATION OF n-HEXADECANE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Microporous silicoaluminophosphate molecular sieves SAPO-5 are considered promising acidic catalysts for hydrocarbon conversion processes. However, their catalytic performance is hindered by diffusion limitations, which can be mitigated by reducing crystal size and fine-tuning the acidic properties. The effect of the initial SiO2/Al2O3 ratio in the synthesis gel on the structural and acidic features of SAPO-5 was investigated using XPS, XRD, SEM, N2 adsorption–desorption, NH3-TPD, and IR spectroscopy. An increase in silicon content was found to decrease crystal size and enhance the external surface area. The concentration of Brønsted acid sites reaches a maximum, suggesting limited Si incorporation into the framework. In the hydroisomerization of n-hexadecane, the highest catalytic activity and selectivity towards isoparaffins were observed for the SAPO-5 sample with the smallest crystals and the highest acidity. These findings demonstrate that the structural and acidic properties of SAPO-5 can be effectively controlled through adjustment of the synthesis gel composition.

Авторлар туралы

D. Serebrennikov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: d25c25@yandex.ru
450054 Ufa, Russian Federation

N. Filippova

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

450054 Ufa, Russian Federation

A. Malunov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

450054 Ufa, Russian Federation

R. Kuvatova

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

450054 Ufa, Russian Federation

O. Travkina

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

450054 Ufa, Russian Federation

B. Kutepov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

450054 Ufa, Russian Federation

M. Agliullin

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

450054 Ufa, Russian Federation

Әдебиет тізімі

  1. Potter M.E. // ACS Catal. 2020. № 10. P. 9758–9789. https://doi.org/10.1021/acscatal.0c02278
  2. Hartmann M., Elangovan S.P. // Adv. Nanoporous Mater. 2010. V. 1. P. 237–312. https://doi.org/10.1016/S1878-7959(09)00104-2
  3. Aljajan Y., Stytsenko V., Rubtsova M., Glotov A. // Catalysts. 2023. № 13. P. 1363. https://doi.org/10.3390/catal13101363
  4. Wang Q., Zhang W., Ma X., Liu Y., Zhang L., Zheng J., Wang Y., Li W., Fan B., Li R. // Fuel. 2023. V. 331. P. 125935. https://doi.org/10.1016/j.fuel.2022.125935
  5. Baerlocher C., McCusker L.B., Olson D.H. Atlas of zeolite framework types. AMS, Elsevier, 2007. 404 p.
  6. Potter M.E., Kezina J., Bounds R., Carravetta M., Mezza T.M., Raja R. // Catal. Sci. Technol. 2018. V. 8. № 20. P. 5155–5164. https://doi.org/10.1039/C8CY01370E
  7. Potter M.E., Cholerton M.E., Kezina J., Bounds R., Carravetta M., Manzoli M., Gianotti E., Lefenfeld M., Raja R. // ACS Catal. 2014. V. 4. № 11. P. 4161–4169. https://doi.org/10.1021/cs501092b
  8. Potter M.E., O’Malley A.J., Chapman S., Kezina J., Newland S.H, Silverwood I.P. // ACS Catal. 2017. V. 7. № 4. P. 2926–2934. https://doi.org/10.1021/acscatal.6b03641
  9. Jadav D., Bandyopadhyay R., Tsunoji N., Sadakane M., Bandyopadhyay M. // Mater. Today: Proc. 2021. V. 45. P. 3726–3732. https://doi.org/10.1016/j.matpr.2020.12.986
  10. Qi J., Jin Q., Zhao K., Zhao T. // J. Porous Mater. 2015. V. 22. P. 1021–1032. https://doi.org/10.1007/s10934-015-9976-y
  11. Danilina N., Krumeich F., Van Bokhoven J.A. // J. Catal. 2010. V. 272. P. 37–43. https://doi.org/10.1016/j.jcat.2010.03.014
  12. Terasaka K., Imai H., Li X. // J. Adv. Chem. Eng. 2015. V. 5. № 4. 1000138. https://doi.org/10.4172/2090-4568.1000138
  13. Wang L., Guo C., Yan S., Huang X., Li Q. // Microporous Mesoporous Mater. 2003. V. 64. P. 63–68. https://doi.org/10.1016/S1387-1811(03)00482-7
  14. Roldán R., Sánchez-Sánchez M., Sankar G., Romero-Salguero F.J., Jiménez-Sanchidrián C. // Microporous Mesoporous Mater. 2007. V. 99. P. 288–298. https://doi.org/10.1016/j.micromeso.2006.09.035
  15. Newland S.H., Sinkler W., Mezza T., Bare S.R., Carravetta M., Haies I.M., Levy A., Keenan S., Raja R. // ACS Catal. 2015. V. 5. P. 6587–6593. https://doi.org/10.1021/acscatal.5b01595
  16. Westgård Erichsen M., Svelle S., Olsbye U. // J. Catal. 2013. V. 298. P. 94–101. https://doi.org/10.1016/j.jcat.2012.11.004
  17. Qiu L., Zhou Z., Yu Y., Zhang H., Qian Y., Yang Y., Duo S. // Res. Chem. Intermed. 2019. V. 45. P. 1457–73. https://doi.org/10.1007/s11164-018-3675-7
  18. Zhu S., Liang S., Wang Y., Zhang X., Li F., Lin H., Zhang Z., Wang X. // Appl. Catal., B. 2016. V. 187. P. 11–18. https://doi.org/10.1016/j.apcatb.2016.01.002
  19. Al-Anazi A., Bellahwel O.C.K., Kavitha C., Abu-Dahrieh J., Ibrahim A.A., Santhosh S., Abasaeed A.E., Fakeeha A.H., Al-Fatesh A.S. // Catalysts. 2024. V. 15. № 5. P. 316. https://doi.org/10.3390/catal14050316
  20. Kang L., Xu B., Li P., Wang K., Chen J., Du H., Liu Q., Zhang L., Lian X. // Nanomaterials. 2025. V. 15. P. 366. https://doi.org/10.3390/nano15050366
  21. Martin C., Tosi-Pellenq N., Patarin J., Coulomb J.P. // Langmuir. 1998. V. 14. P. 1774–1778. https://doi.org/10.1021/la960755c
  22. Singh A.K., Yadav R., Sudarsan V., Kishore K., Upadhyayula S., Sakthivel A. // RSC Adv. 2014. V. 4. P. 8727–8734. https://doi.org/10.1039/C3RA47298A
  23. Hu E., Derebe A.T., Almansoori A., Wang K. // Int. J. Mater. Sci. Eng. 2014. V. 2. № 1. P. 10–14. https://doi.org/10.12720/ijmse.2.1.10-14
  24. Cho K., Kim S.K., Lee E.K., Kim J.-N. // J. Nanosci. Nanotechnol. 2017. V. 17. P. 5869–5877. https://doi.org/10.1166/jnn.2017.13838
  25. Hu E., Lai Z., Wang K. // J. Chem. Eng. Data. 2010. V. 55. P. 3286–3289. https://doi.org/10.1021/je100093u
  26. Xiao T., An L., Wang H. // Appl. Catal., A. 1995. V. 130. P. 187–194. https://doi.org/10.1016/0926-860X(95)00107-7
  27. Basina G., AlShami D., Polychronopoulou K., Tzitzios V., Balasubramanian V., Dawaymeh F., Karanikolos G.N., Al Wahedi Y. // Surf. Coat. Technol. 2018. V. 353. P. 378–386. https://doi.org/10.1016/j.surfcoat.2018.08.083
  28. Barthomeuf D. // Zeolites. 1994. V. 14. P. 394–401. https://doi.org/10.1016/0144-2449(94)90164-3
  29. Danilina N., Castelanelli S.A., Troussard E., van Bokhoven J.A. // Catal. Today. 2011. V. 168. P. 80–85. https://doi.org/10.1016/j.cattod.2011.01.042
  30. Ali D., Zeiger C.R., Azim M.M., Lein H.L., Mathisen K. // Microporous Mesoporous Mater. 2020. V. 306. P. 110364. https://doi.org/10.1016/j.micromeso.2020.110364
  31. Ostrowski A., Jankowska A., Tabero A., Janiszewska E., Kowalak S. // Molecules. 2023. V. 28. P. 7312. https://doi.org/10.3390/molecules28217312
  32. Serebrennikov D.V., Zabirov A.R., Saliev A.N., Yakovenko R.E., Prosochkina T.R., Fayzullina Z.R., Guskov V.Yu., Kutepov B.I., Agliullin M.R. // Gels. 2024. V. 10. P. 792. https://doi.org/10.3390/gels10120792
  33. Serebrennikov D., Vlasov M., Travkina O., Filippova N., Mescheryakova E., Kuvatova R., Sabirov D., Agliullin M.R. // Chim. Tech. Acta. 2025. V. 12. № 3. 12301. P. 8676. https://doi.org/10.15826/chimtech.2025.12.3.01
  34. Serebrennikov D.V., Zabirov A.R., Kuvatova R.Z., Bagdanova D.O., Malunov A.I., Dement’ev K.I., Agliullin M.R. // Petrol. Chem. 2024. V. 64. P. 1276–1285. https://doi.org/10.1134/S0965544124080188
  35. Serebrennikov D.V., Zabirov A.R., Kuvatova R.Z., Bagdanova D.O., Malunov A.I., Travkina O.S., Kutepov B.I., Agliullin M.R. // Petrol. Chem. 2024. V. 64. P. 1122–1129. https://doi.org/10.1134/S0965544124060197
  36. Agliullin M.R., Arzumanov S.S., Gerasimov E.Yu., Grigo- rieva N.G., Bikbaeva V.R., Serebrennikov D.V., Khali- lov L.M., Kutepov B.I. // CrystEngComm. 2023. V. 25. P. 3096–3107. https://doi.org/10.1039/D3CE00278K
  37. Tamura M., Shimizu K., Satsuma A. // Appl. Catal., A. 2012. V. 433–434. P. 135–145. https://doi.org/10.1016/j.apcata.2012.05.008
  38. Pastore H.O., Coluccia S., Marchese L. // Annu. Rev. Mater. Res. 2005. V. 35. P. 351–395. https://doi.org/10.1146/annurev.matsci.35.103103.120732
  39. Höchtl M., Jentys A., Vinek H. // J. Catal. 2000. V. 190. P. 419–332. https://doi.org/10.1006/jcat.1999.2761

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025