Hydrogen in BCC-iron alloys: ab initio Simulation

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Trapping of hydrogen atoms by defects in the crystal lattice of various iron phases is an important factor in the theoretical description of the mechanisms of hydrogen embrittlement in steels. This paper provides a brief overview of our studies of the interaction of hydrogen with point defects and phase boundaries in BCC-iron alloys using ab initio calculations. The capture of hydrogen atoms by alloying impurities, as well as by vacancies (Va) and vacancy complexes VaHn, grain boundaries (GBs), and the ferrite/cementite interphase boundary, is considered. A hierarchical map of trapping energies associated with common crystal-lattice defects is presented, and the most attractive sites for H traps are identified. The influence of V and Ti alloying impurities on the interaction of H with BCC iron is considered.

Full Text

Restricted Access

About the authors

A. A. Mirzoev

South Ural State University

Author for correspondence.
Email: mirzoevaa@susu.ru
Russian Federation, Chelyabinsk, 454080

A. V. Verkhovykh

South Ural State University

Email: mirzoevaa@susu.ru
Russian Federation, Chelyabinsk, 454080

D. A. Mirzaev

South Ural State University

Email: mirzoevaa@susu.ru
Russian Federation, Chelyabinsk, 454080

References

  1. Johnson W.H. On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids // Proc. R. Soc. London. 1874. V. 23. P. 168–179.
  2. Bouaziz O., Zurob H., Huang M. Driving force and logic of development of advanced high strength steels for automotive applications // Steel Research Intern. 2013. V. 84. № 10. P. 937–947.
  3. Depover T., Escobar D.P., Wallaert E., Zermout Z., Verbeken K. Effect of hydrogen charging on the mechanical properties of advanced high strength steels // Intern. J. Hydrogen Energy. 2014. V. 39. № 9. P. 4647–4656.
  4. Laureys A., Depraetere R., Cauwels M., Depover T., Hertelé S., Verbeken K. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation // J. Natural Gas Sci. Eng. 2022. V. 101. P. 104534.
  5. Drexler A., Depover T., Leitner S., Verbeken K., Ecker W. Microstructural based hydrogen diffusion and trapping models applied to Fe–CX alloys // J. Alloys Comp. 2020. V. 826. P. 154057.
  6. Колачев Б.А. Водородная хрупкость металлов // М.: Металлургия, 1985. 216 с.
  7. Lynch S. Hydrogen embrittlement phenomena and mechanisms // Corrosion Rev. 2012. V. 30. № 3–4. P. 105–123.
  8. Nagumo M. Fundamentals of hydrogen embrittlement // Singapore: Springer, 2016. 239 p.
  9. Pundt A., Kirchheim R. Hydrogen in metals: microstructural aspects // Annu. Rev. Mater. Res. 2006. V. 36. P. 555–608.
  10. Robertson I.M., Sofronis P., Nagao A., Martin L., Wang S., Gross D.W., Nygren K.E. Hydrogen embrittlement understood // Metal. Mater. Trans. A. 2015. V. 46. P. 2323–2341.
  11. Li X., Ma X., Zhang J., Akiyama E., Wang Y., Song X. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention // Acta Metal. Sinica (English Letters). 2020. V. 33. P. 759–773.
  12. Beachem C.D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) // Metal. Mat. Trans. B. 1972. V. 3. P. 441–455.
  13. Sofronis P., Robertson I.M. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals // Phil. Mag. A. 2002. V. 82. № 17–18. P. 3405–3413.
  14. Djukic M.B., Bakic G.M., Zeravcic V.S., Sedmak A., Rajicic B. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion // Eng. Fracture Mechanics. 2019. V. 216. P. 106528.
  15. Zhong L., Wu R., Freeman A.J., Olson G.B. Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron // Phys. Rev. B. 2000. V. 62. № 21. P. 13938.
  16. Tateyama Y., Ohno T. Stability and clusterization of hydrogen-vacancy complexes in α–Fe: an ab initio study // Phys. Rev. B. 2003. V. 67. № 17. P. 174105.
  17. Ma Y., Shi Y., Wang H., Mi Z., Liu Z., Gao L., Qiao L. A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe // Intern. J. Hydrogen Energy. 2020. V. 45. № 51. P. 27941–27949.
  18. Di Stefano D., Nazarov R., Hickel T., Neugebauer J., Mrovec M., Elsässer C. First-principles investigation of hydrogen interaction with TiC precipitates in α-Fe // Phys. Rev. B. 2016. V. 93. № 18. P. 184108.
  19. McEniry E. J., Hickel T., Neugebauer J. Hydrogen behaviour at twist {110} grain boundaries in α-Fe // Philosoph. Trans. Royal Soc. A: Mathematical, Physical and Engineering Sciences. 2017. V. 375. № 2098. P. 20160402.
  20. Counts W.A., Wolverton C., Gibala R. First-principles energetics of hydrogen traps in α-Fe: Point defects // Acta Mater. 2010. V. 58. № 14. P. 4730–4741.
  21. Itakura M., Kaburaki H., Yamaguchi M., Okita T. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study // Acta Mater. 2013. V. 61. № 18. P. 6857–6867.
  22. McEniry E. J., Hickel T., Neugebauer J. Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures // Acta Mater. 2018. V. 150. P. 53–58.
  23. Jiang D.E., Carter E.A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles // Phys. Rev. B. 2004. V. 70. № 6. P. 064102.
  24. Bhadeshia H.K.D.H. Prevention of hydrogen embrittlement in steels // ISIJ international. 2016. V. 56. № 1. P. 24–36.
  25. Nazarov R., McEniry E., Hickel T., Yagodzinsky Y., Zermout Z., Mracze K. Hydrogen sensitivity of different advanced high strength microstructures (HYDRAMICROS) / European Commission, Directorate-General for Research and Innovation, Final report, Publications Office. 2015. 163.
  26. Kholtobina A.S., Pippan R., Romaner L., Scheiber D., Ecker W., Razumovskiy V.I. Hydrogen trapping in bcc iron // Materials. 2020. V. 13. № 10. P. 2288.
  27. Mirzaev D.A., Mirzoev A.A., Okishev K.Y., Verkhovykh A.V. Hydrogen–vacancy interaction in bcc iron: ab initio calculations and thermodynamics // Molecular Physics. 2014. V. 112. № 13. P. 1745–1754.
  28. Mirzoev A.A., Mirzaev D.A., Verkhovykh A.V. Hydrogen–vacancy interactions in ferromagnetic and paramagnetic bcc iron: Ab initio calculations // Phys. Stat. Sol. (b). 2015. V. 252. № 9. P. 1966–1970.
  29. Rakitin M.S., Mirzoev A.A., Mirzaev D.A. First-principles and thermodynamic simulation of elastiс stress effect on energy of hydrogen dissolution in alpha iron // Russ. Phys. Journal. 2018. V. 60. P. 2136–2143.
  30. Verkhovykh A.V., Mirzoev A.A., Ruzanova G.E., Mirzaev D.A., Okishev K.Yu. Interaction of hydrogen atoms with vacancies and divacancies in bcc iron / Mater. Sci. Forum. – Trans Tech Publications Ltd, 2016. V. 870. P. 550–557.
  31. Mirzaev D.A., Mirzoev A.A., Okishev K.Yu., Verkhovykh A.V. Ab initio modelling of the interaction of H interstitials with grain boundaries in bcc Fe // Molecular Phys. 2016. V. 114. № 9. P. 1502–1512.
  32. Mirzoev A.A., Verkhovykh A.V., Okishev K.Y., Mirzaev D.A. Hydrogen interaction with ferrite/cementite interface: Ab initio calculations and thermodynamics // Molecular Physics. 2018. V. 116. № 4. P. 482–490.
  33. Мирзаев Д.А., Мирзоев А.А., Ракитин М.С. Влияние легирования на термодинамические характеристики водорода в ОЦК-железе // Вестник Южно-Уральского государственного университета. Серия: Металлургия. 2016. Т. 16. № 4. С. 40–53.
  34. Урсаева А.В., Ракитин М.С., Рузанова Г.Е., Мирзоев А.А. Аb initio моделирование взаимодействия водорода с точечными дефектами в ОЦК-железе // Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика. 2011. № 10 (227). С. 114–119.
  35. Schwarz K., Blaha P., Madsen G.K. H. Electronic structure calculations of solids using the WIEN2k package for material sciences // Comp. Phys. communications. 2002. V. 147. № 1–2. P. 71–76.
  36. Гельд П.В., Рябов Р.А. Водород в металлах и сплавах. М.: Металлургия, 1974. 272 с.
  37. Danilkin S.A., Fuess H., Wipf H., Ivanov A., Gavriljuk V.G., Delafosse D., Magnin T. Hydrogen vibrations in austenitic fcc Fe–Cr–Mn–Ni steels // Europhysics Letters. 2003. V. 63. P. 69.
  38. Iwamoto M., Fukai Y. Superabundant vacancy formation in iron under high hydrogen pressures: thermal desorption spectroscopy // Mater. Trans. JIM. 1999. V. 40. P. 606–611.
  39. Ono K., Meshii M. Hydrogen detrapping from grain boundaries and dislocations in high purity iron // Acta Metal. Mater. 1992. V. 40. P. 1357–1364.
  40. Besenbacher F., Myers S.M., Nordlander P., Norskov J.K. Multiple hydrogen occupancy of vacancies in Fe // J. Appl. Phys. 1987. V. 61. P. 1788–1794.
  41. Zhou D.S., Shiflet G.J. Ferrite: cementite crystallography in pearlite // Metal. Trans. A. 1992. V. 23. P. 1259–1269.
  42. Счастливцев В.М., Мирзаев Д.А., Яковлева И.Л. Структура термически обработанной стали. М: Металлургия. 1994. 287.
  43. Kawakami K., Matsumiya T. Ab-initio investigation of hydrogen trap state by cementite in bcc-Fe // ISIJ international. 2013. V. 53. P. 709–713.
  44. Takai K., Watanuki R. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels // ISIJ international. 2003. V. 43. P. 520–526.
  45. Rakitin M.S., Mirzoev A.A. Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3 sp, 3 d, and 4 d Impurities in bcc Iron // Phys.Sol. State. 2021. V. 63. P. 1065–1068.
  46. Myers S.M., Baskes M.I., Birnbaum H.K. et al. Hydrogen interactions with defects in crystalline solids // Rev. Mod. Physics. 1992. V. 64. P. 559.
  47. Liu Y.L., Zhang Y., Zhou H.B., Lu G.H., Liu F., Luo G.N. Vacancy trapping mechanism for hydrogen bubble formation in metal // Phys. Rev. B. 2009. V. 79. P. 172103.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main elements of structural defects in BCC steels, which must be taken into account in order to cover the problem of hydrogen degradation of steels. The elements considered in this paper are highlighted in bold italics.

Download (144KB)
3. Fig. 2. The crystal structure of BCC-Fe with an indication of the magnetic ordering (FM) and the positions of the interstitial insertion positions (tetrapores (TP) and octapores (OP)).

Download (138KB)
4. 3. Dependence of the energy of hydrogen dissolution in α-iron (ΔEsol) on the external hydrostatic stress (σ) [29].

Download (80KB)
5. Figure 4. Energy diagram of the behavior of a hydrogen atom in a metal to explain the concepts of dissolution energy (Es), entrapped binding energy (Eb), and diffusion activation energy (Ea) in an ideal lattice.

Download (87KB)
6. 5. The dependence of the binding energy of a hydrogen atom in the VaHn complex on the number of H atoms: circles are the results of our modeling [27]; triangles are the results of work [16]; squares are experimental data [40].

Download (91KB)
7. Fig. 6. Temperature dependence of the fraction of hydrogen atoms bound to vacancies at the total concentration of hydrogen xH: 1 — 10-4; 2 – 3 ·10-4; 3 — 10-3.

Download (76KB)
8. 7. The hydrogen dissolution energy as a function of the distance from the grain interface for grain boundaries Σ3(111), Σ5(210) and Σ5(310) in BCC-Fe.Dashed lines indicate the dissolution energies of H in tetrahedral positions in BCC-Fe.

Download (97KB)
9. 8. Supercell for the ferrite/cementite interface. The numbers indicate the positions of hydrogen at the interface.

Download (158KB)
10. 9. The dependence of the hydrogen dissolution energy near various impurities in the iron matrix on the change in the electron density inside the tetrahedral BCC-Fe pore after the introduction of a hydrogen atom into it. The straight line in the figure corresponds to the change in the energy of a hydrogen atom when immersed in a homogeneous electron gas within the framework of the theory of an effective medium (the solid curve from Fig. 4 of [46]).

Download (94KB)