Роль длинных некодирующих РНК в растениях
- Авторы: Пронозин А.Ю.1,2, Афонников Д.А.1,2,3
-
Учреждения:
- Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
- Институт цитологии и генетики Сибирского отделения Российской академии наук
- Новосибирский национальный исследовательский государственный университет
- Выпуск: Том 61, № 1 (2025)
- Страницы: 3-23
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://consilium.orscience.ru/0016-6758/article/view/686162
- DOI: https://doi.org/10.31857/S0016675825010016
- EDN: https://elibrary.ru/VFMYSM
- ID: 686162
Цитировать
Аннотация
Длинные некодирующие РНК (днРНК) представляют собой класс линейных или кольцевых молекул РНК длиной более 200 нуклеотидов без открытых рамок считывания. Экспериментальные исследования показали участие днРНК в регуляции устойчивости к холодовому, солевому, тепловому стрессу, в развитии плодов, корня и листьев. Однако экспериментальные методы являются трудоемкими и дорогостоящими подходами и пока еще не могут быть использованы для массового изучения днРНК в масштабах всего генома. Для этих целей применяют биоинформатические подходы, которые направлены на широкомасштабное распознавание последовательностей днРНК в геномах и транскриптомах. Несмотря на растущее число исследований, посвященных структурно-функциональному анализу днРНК, данный тип молекул по-прежнему остается малоизученным. Это связано со множеством факторов, которые нужно учитывать при идентификации днРНК. Применение пан-геномов и пан-транскриптомов позволит повысить эффективность исследования и общее количество предсказанных днРНК по сравнению с использованием генома одного представителя вида. Настоящий обзор посвящен описанию молекулярных и биологических функций днРНК, экспериментальных и биоинформатических методов идентификации, а также закономерностям эволюции, выявлению и анализу днРНК в масштабах пан-геномов и пан-транскриптомов.
Ключевые слова
Полный текст

Об авторах
А. Ю. Пронозин
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Институт цитологии и генетики Сибирского отделения Российской академии наук
Автор, ответственный за переписку.
Email: pronozinartem95@gmail.com
Курчатовский геномный центр
Россия, Новосибирск; НовосибирскД. А. Афонников
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Email: pronozinartem95@gmail.com
Курчатовский геномный центр
Россия, Новосибирск; Новосибирск; НовосибирскСписок литературы
- Deng P., Liu S., Nie X., Wu L. Conservation analysis of long non-coding RNAs in plants // Sci. China Life Sci. 2018. V. 61. P. 190–198.
- Wu H.-J., Wang Z-M., Wang M., Wang X-J. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants // Plant Physiol. 2013. V. 161. № 4. P. 1875–1884.
- Zhu Q.-H., Wang M.-B. Molecular functions of long non-coding RNAs in plants // Genes. 2012. V. 3. № 1. P. 176–190.
- Назипова Н.Н. Разнообразие некодирующих РНК в геномах эукариот // Матем. биол. и биоинформат. 2021. Т. 16. № 2. С. 256–298.
- Joshi A., Romanowska J. Recent advances in computational-based approaches in epigenetics studies // Epigenetics Methods. 2020. P. 569–590.
- Kim E.-D., Sung S. Long noncoding RNA: Unveiling hidden layer of gene regulatory networks // Trends Plant Sci. 2012. V. 17. № 1. P. 16–21.
- Karlik E., Ari S., Gozukirmizi N. LncRNAs: Genetic and epigenetic effects in plants // Biotechnol. Biotechnol. 2019. V. 33. № 1. P. 429–439. https://doi.org/10.1080/13102818.2019.1581085
- Tsai M.-C., Manor O., Wan Y. et al. Long noncoding RNA as modular scaffold of histone modification complexes // Science. 2010. V. 329. № 5992. P. 689–693. https://doi.org/10.1126/science.1192002
- Sousa C., Johansson C., Charonet C. et al. Translational and structural requirements of the early nodulin gene enod40 , a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex // Mol. Cell. Biol. 2001. V. 21. № 1. P. 354–366. https://doi.org/10.1128/MCB.21.1.354-366.2001
- Medvedeva Y.A., Lennartsson A., Ehsani R. et al. EpiFactors: A comprehensive database of human epigenetic factors and complexes // Database. 2015. V. 2015. P. bav067.
- Frankish A., Diekhans M., Jungreis I. et al. GENCODE 2021 // Nucl. Acids Res. 2021. V. 49. № D1. P. D916–D923.
- Гордиюк В.В. Длинные некодирующие РНК – камертон в регуляции клеточных процессов // Ukr. Biochem. J. 2014. V. 86. № 2. С. 5–15.
- Zhao X., Li J., Lian B. et al. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA // Nat. Commun. 2018. V. 9. № 1. P. 5056.
- Li X., Wu Z., Fu X. et al. lncRNAs: Insights into their function and mechanics in underlying disorders // Mutat. Res. Mutat. Res. 2014. V. 762. P. 1–21.
- Ahmad P., Bensaoud C., Mekki I. et al. Long non-coding RNAs and their potential roles in the vector–host–pathogen triad // Life. MDPI. 2021. V. 11. № 1. P. 56.
- De Quattro C., Pè M.E., Bertolini E. Long noncoding RNAs in the model species Brachypodium distachyon // Sci. Rep. 2017. V. 7. № 1. P. 11252.
- Ma L., Bajic V.B., Zhang Z. On the classification of long non-coding RNAs // RNA Biol. 2013. V. 10. № 6. P. 924–933. https://doi.org/10.4161/rna.24604
- Chen L., Zhu Q.-H., Kaufmann K. Long non-coding RNAs in plants: Emerging modulators of gene activity in development and stress responses // Planta. 2020. V. 252. № 5. P. 92. https://doi.org/10.1007/s00425-020-03480-5
- Griffiths-Jones S. miRBase: The microRNA sequence database // MicroRNA Protocols. 2006. V. 342. P. 129–138.
- Amaral P.P., Mattick J.S. Noncoding RNA in development // Mamm. Genome. 2008. V. 19. P. 454–492.
- Бейлерли О.А., Гареев И.Ф. Длинные некодирующие РНК: какие перспективы? // Профилактическая медицина. 2020. Т. 23. № 2. С. 124–128.
- Blythe A.J., Fox A.H., Bond C.S. The ins and outs of lncRNA structure: How, why and what comes next? // Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2016. V. 1859. № 1. P. 46–58.
- Bryzghalov O., Makałowska I., Szcześniak M.W. lncEvo: Automated identification and conservation study of long noncoding RNAs // BMC Bioinformatics. 2021. V. 22. № 1. P. 59. https://doi.org/10.1186/s12859-021-03991-2
- Zhao Q., Sun Y., Wang D. et al. LncPipe: A nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data // J. Genet. Genomics. 2018. V. 45. https://doi.org/10.1016/j.jgg.2018.06.005
- Talyan S., Filipów S., Ignarski M. et al. CALINCA – a novel pipeline for the identification of lncRNAs in podocyte disease // Cells. MDPI. 2021. V. 10. № 3. P. 692.
- Campalans A., Kondorosi A., Crespi M. Enod40, a short open reading frame – containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula // Plant Cell. 2004. V. 16. № 4. P. 1047–1059.
- Unver T., Tombuloglu H. Barley long non-coding RNAs (lncRNA) responsive to excess boron // Genomics. 2020. V. 112. № 2. P. 1947–1955.
- Khorkova O., Hsiao J., Wahlestedt C. Basic biology and therapeutic implications of lncRNA // Adv. Drug Deliv. Rev. 2015. V. 87. P. 15–24.
- Duret L., Chureau С., Samain S. et al. The Xist RNA Gene evolved in eutherians by pseudogenization of a protein-coding gene // Science. 2006. V. 312. № 5780. P. 1653–1655. https://doi.org/10.1126/science.1126316
- Graf J., Kretz M. From structure to function: Route to understanding lncRNA mechanism // BioEssays. 2020. V. 42. № 12. https://doi.org/10.1002/bies.202000027
- Golicz A.A., Singh M.B., Bhalla P.L. The long intergenic noncoding RNA (LincRNA) landscape of the soybean genome // Plant Physiol. 2018. V. 176. № 3. P. 2133–2147.
- Cheng F., Wu J., Fang L., Wang X. Syntenic gene analysis between Brassica rapa and other Brassicaceae species // Front. Plant Sci. Frontiers. 2012. V. 3. P. 30895.
- Huang L., Dong H., Zhou D. et al. Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa // Plant J. 2018. V. 96. № 1. P. 203–222. https://doi.org/10.1111/tpj.14016
- Derrien T., Johnson R., Bussotti G. et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression // Genome Res. 2012. V. 22. № 9. P. 1775–1789.
- Ponting C.P., Oliver P.L., Reik W. Evolution and functions of long noncoding RNAs // Cell. 2009. V. 136. № 4. P. 629–641.
- Golicz A.A., Bayer P.E., Barker G.C. et al. The pangenome of an agronomically important crop plant Brassica oleracea // Nat. Commun. 2016. V. 7. № 1. P. 13390.
- Meile L., Croll D., Brunner P.C. et al. A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch // New Phytol. 2018. V. 219. № 3. P. 1048–1061. https://doi.org/10.1111/nph.15180
- Alcaraz L.D., Moreno-Hagelsieb G., Eguiarte L.E. et al. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics // BMC Genomics. 2010. V. 11. № 1. P. 332. https://doi.org/10.1186/1471-2164-11-332
- Rasko D.A., Rosovitz M.J., Myers G.S.A. et al. The pangenome structure of Escherichia coli: Comparative genomic analysis of E. coli commensal and pathogenic isolates // J. Bacteriol. 2008. V. 190. № 20. P. 6881–6893. https://doi.org/10.1128/JB.00619-08
- Merot-L’anthoene V., Tournebize R., Darracq O. et al. Development and evaluation of a genome – wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. // Plant Biotechnol. J. 2019. V. 17. № 7. P. 1418–1430. https://doi.org/10.1111/pbi.13066
- Budak H., Kaya S.B., Cagirici H.B. Long non-coding RNA in plants in the era of reference sequences // Front. Plant Sci. Frontiers. 2020. V. 11. P. 441273.
- Britto-Kido S. de A., Neto J.R.C.F., Pandolfi V. et al. Natural antisense transcripts in plants: A review and identification in soybean infected with Phakopsora pachyrhizi SuperSAGE Library // Sci. World J. 2013. V. 2013.
- Kapusta A., Kronenberg Z., Lynch V.J. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs // PLoS Genet. 2013. V. 9. № 4. P. e1003470.
- Лукина С.С., Бурденный А.М., Филиппова Е.А. et al. Роль длинных некодирующих РНК и ДНК-метилирования в патогенезе рака яичников // Патол. физиол. и эксперим. терапия. 2022. Т. 66. № 4. С. 143–156.
- Ulitsky I., Bartel D.P. lincRNAs: Genomics, evolution, and mechanisms // Cell. 2013. V. 154. № 1. P. 26–46.
- Dinger M.E., Pang K.C., Mercer T.R. et al. Differentiating protein-coding and noncoding RNA: Challenges and ambiguities // PLoS Comput. Biol. 2008. V. 4. № 11. P. e1000176.
- Xie C., Yuan J., Li H. et al. NONCODEv4: Exploring the world of long non-coding RNA genes // Nucleic Acids Res. 2014. V. 42. № D1. P. D98–D103.
- Pal D., Rao M.R.S. Long noncoding RNAs in pluripotency of stem cells and cell fate specification // Long Non Coding RNA Biology / Ed. Rao M.R.S. Singapore: Springer, 2017. V. 1008. P. 223–252.
- Татосян К.А., Зиневич Л.С., Демин Д.Э., Шварц А.М. Функциональные особенности длинных некодирующих РНК, содержащих последовательности мобильных генетических элементов // Мол. биол. 2020. Т. 54. № 5. P. 718–724.
- Zhao Z., Zang S., Zou W. et al. Long non-coding RNAs: New players in plants // Int. J. Mol. Sci. MDPI. 2022. V. 23. № 16. P. 9301.
- Kopp F., Mendell J.T. Functional classification and experimental dissection of long noncoding RNAs // Cell. Elsevier. 2018. V. 172. № 3. P. 393–407.
- Huarte M., Rinn J.L. Large non-coding RNAs: missing links in cancer? // Hum. Mol. Genet. 2010. V. 19. № R2. P. R152–R161.
- Hung Т., Wang Y., Lin M.F. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters // Nat. Genet. 2011. V. 43. № 7. P. 621–629.
- Loewer S., Cabili M.N., Guttman M. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells // Nat. Genet. 2010. V. 42. № 12. P. 1113–1117.
- Wang K.C., Chang H.Y. Molecular mechanisms of long noncoding RNAs // Mol. Cell. 2011. V. 43. № 6. P. 904–914.
- Chen J., Wang H., Yao Y. Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction // Ultrasonics. 2016. V. 69. P. 19–24.
- Kotake Y., Nakagawa T., Kitagawa K. et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene // Oncogene. 2011. V. 30. № 16. P. 1956–1962.
- Ye X., Wang S., Zhao X. et al. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa // Plant J. 2022. V. 110. № 4. P. 978–993. https://doi.org/10.1111/tpj.15714
- Yang L., Froberg J.E., Lee J.T. Long noncoding RNAs: Fresh perspectives into the RNA world // Trends Biochem. Sci. 2014. V. 39. № 1. P. 35–43.
- Lam M.T.Y., Cho H., Lesch H.P. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription // Nature. 2013. V. 498. № 7455. P. 511–515.
- Kim T.-K., Hemberg M., Gray J.M. Enhancer RNAs: A class of long noncoding RNAs synthesized at enhancers // Cold Spring Harb. Perspect. Biol. 2015. V. 7. № 1. P. a018622.
- Kim T.-K., Hemberg M., Gray J.M. et al. Widespread transcription at neuronal activity-regulated enhancers // Nature. 2010. V. 465. № 7295. P. 182–187.
- Lai F., Orom U.A., Cesaroni M. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription // Nature. 2013. V. 494. № 7438. P. 497–501.
- Melo C.A., Drost J., Wijchers P.J. et al. eRNAs are required for p53-dependent enhancer activity and gene transcription // Mol. Cell. 2013. V. 49. № 3. P. 524–535.
- Zhang P., Meng J., Luan Y. et al. Plant miRNA–lncRNA interaction prediction with the ensemble of CNN and IndRNN // Interdiscip. Sci. Comput. Life Sci. 2020. V. 12. P. 82–89.
- Chen K., Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs // Nat. Rev. Genet. 2007. V. 8. № 2. P. 93–103.
- Jin Q., Zhao Z., Zhao Q. et al. Long noncoding RNAs: Emerging roles in pulmonary hypertension // Heart Fail. Rev. 2020. V. 25. P. 795–815.
- Huntzinger E., Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay // Nat. Rev. Genet. 2011. V. 12. № 2. P. 99–110.
- Yoon J.-H., Abdelmohsen K., Kim J. et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination // Nat. Commun. 2013. V. 4. № 1. P. 2939.
- Mukherjee N., Corcoran D.L., Nusbaum J.D. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability // Mol. Cell. 2011. V. 43. № 3. P. 327–339.
- Thomson D.W., Dinger M.E. Endogenous microRNA sponges: Evidence and controversy // Nat. Rev. Genet. 2016. V. 17. № 5. P. 272–283.
- Franco-Zorrilla J.M., Valli A., Todesco M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity // Nat. Genet. 2007. V. 39. № 8. P. 1033–1037.
- Du Q., Wang K., Zou C. et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize // Plant Physiol. 2018. V. 177. № 4. P. 1743–1753.
- Wang T., Zhao M., Zhang X. et al. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula // J. Exp. Bot. 2017. V. 68. № 21–22. P. 5937–5948.
- Faghihi M.A., Zhang M., Huang J. et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function // Genome Biol. 2010. V. 11. № 5. https://doi.org/10.1186/gb-2010-11-5-r56
- Kimura T., Jiang S., Nishizawa M. et al. Stabilization of human interferon-α1 mRNA by its antisense RNA // Cell. Mol. Life Sci. 2013. V. 70. № 8. P. 1451–1467. https://doi.org/10.1007/s00018-012-1216-x
- Wang Y., Pang W.J., Wei N. et al. Identification, stability and expression of Sirt1 antisense long non-coding RNA // Gene. 2014. V. 539. № 1. P. 117–124.
- Cai X., Cullen B.R. The imprinted H19 noncoding RNA is a primary microRNA precursor // RNА. 2007. V. 13. № 3. P. 313–316.
- Augoff K., McCue B., Plow E.F. et al. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer // Mol. Cancer. 2012. V. 11. № 1. https://doi.org/10.1186/1476-4598-11-5
- Kallen A.N., Zhou X.B., Xu J. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs // Mol. Cell. 2013. V. 52. № 1. P. 101–112.
- Amor B.B., Wirth S., Merchan F. et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses // Genome Res. 2009. V. 19. № 1. P. 57–69.
- Hirsch J., Lefort V., Vankersschaver M. et al. Characterization of 43 non-protein-coding mRNA genes in Arabidopsis, including the MIR162a-derived transcripts // Plant Physiol. 2006. V. 140. № 4. P. 1192–1204.
- Lamin-Samu A.T., Zhuo S., Ali M., Lu G. Long non-coding RNA transcriptome landscape of anthers at different developmental stages in response to drought stress in tomato // Genomics. 2022. V. 114. № 4. P. 110383.
- Kryuchkova-Mostacci N., Robinson-Rechavi M. A benchmark of gene expression tissue-specificity metrics // Brief. Bioinform. 2017. V. 18. № 2. P. 205–214.
- Li L., Eichten S.R., Shimizu R. et al. Genome-wide discovery and characterization of maize long non-coding RNAs // Genome Biol. 2014. V. 15. № 2. P. https://doi.org/10.1186/gb-2014-15-2-r40.
- Han L., Mu Z., Luo Z. et al. New lncRNA annotation reveals extensive functional divergence of the transcriptome in maize // J. Integr. Plant Biol. 2019. V. 61. № 4. P. 394–405. https://doi.org/10.1111/jipb.12708
- Subramanian S., Kumar S. Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome // Genetics. 2004. V. 168. № 1. P. 373–381.
- Yanai I., Benjamin H., Shmoish M. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification // Bioinformatics. 2005. V. 21. № 5. P. 650–659.
- Ceriani L., Verme P. The origins of the Gini index: Extracts from Variabilità e Mutabilità (1912) by Corrado Gini // J. Econ. Inequal. 2012. V. 10. P. 421–443.
- Julien P., Brawand D., Soumillon M. et al. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation // PLoS Biol. 2012. V. 10. № 5. P. e1001328.
- Xiao S.-J., Zhang C., Zou Q., Ji Z.L. TiSGeD: A database for tissue-specific genes // Bioinformatics. 2010. V. 26. № 9. P. 1273–1275.
- Yu X., Lin J., Zack D.J., Qian J. Computational analysis of tissue-specific combinatorial gene regulation: Predicting interaction between transcription factors in human tissues // Nucl. Acids Res. 2006. V. 34. № 17. P. 4925–4936.
- Huang X., Li S.Z., Wang Y. Jensen-Shannon boosting learning for object recognition // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE. 2005. V. 2. P. 144–149.
- Marquardt S., Raitskin O., Wu Z. et al. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription // Mol. Cell. 2014. V. 54. № 1. P. 156–165.
- Liu X., Hao L., Li D. et al. Long non-coding RNAs and their biological roles in plants // Genomics Proteomics Bioinformatics. 2015. V. 13. № 3. P. 137–147.
- Ding J., Lu Q., Ouyang Y. et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice // Proc. Natl Acad. Sci. USA. 2012. V. 109. № 7. P. 2654–2659. https://doi.org/10.1073/pnas.1121374109
- Song J.-H., Cao J.-S., Wang C.-G. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility // Plant Cell Rep. 2013. V. 32. P. 21–30.
- Kim J., Yi H., Choi G. et al. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction // Plant Cell. 2003. V. 15. № 10. P. 2399–2407.
- Wang J., Meng X., Dobrovolskaya O.B. et al. Non-coding RNAs and their roles in stress response in plants: 5 // Genomics Proteomics Bioinformatics. 2017. V. 15. № 5. P. 301–312. https://doi.org/10.1016/j.gpb.2017.01.007
- Wang A., Hu J., Gao C. et al. Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis) // Sci. Rep. 2019. V. 9. № 1. P. 5002
- Wang P., Dai L., Ai J. et al. Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine // Sci. Rep. 2019. V. 9. № 1. P. 6638.
- Chung P.J., Jung H., Jeong D.H. et al. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice // BMC Genomics. 2016. V. 17. № 1. P. 563. https://doi.org/10.1186/s12864-016-2997-3
- Calixto C.P., Tzioutziou N.A., James A.B. et al. Cold-dependent expression and alternative splicing of Arabidopsis long non-coding RNAs // Front. Plant Sci. Frontiers Media SA. 2019. V. 10. P. 235.
- Jha U.C., Nayyar H., Jha R. et al. Long non-coding RNAs: Emerging players regulating plant abiotic stress response and adaptation // BMC Plant Biol. 2020. V. 20. № 1. P. 466. https://doi.org/10.1186/s12870-020-02595-x
- Zhang X., Dong J., Deng F. et al. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress // BMC Plant Biol. 2019. V. 19. № 1. P. 459. https://doi.org/10.1186/s12870-019-2088-0
- Wang X., Fan H., Wang B., Yuan F. Research progress on the roles of lncRNAs in plant development and stress responses // Front. Plant Sci. Frontiers Media SA. 2023. V. 14. P. 1138901.
- Chen J., Zhong Y., Qi X. LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation // BMC Plant Biol. 2021. V. 21. № 1. P. 410. https://doi.org/10.1186/s12870-021-03195-z
- Kazemzadeh M., Safaralizadeh R., Orang A.V. LncRNAs: Emerging players in gene regulation and disease pathogenesis // J. Genet. 2015. V. 94. P. 771–784.
- Zhu Y., Chen L., Hong X. et al. Revealing the novel complexity of plant long non-coding RNA by strand-specific and whole transcriptome sequencing for evolutionarily representative plant species // BMC Genomics. 2022. V. 23. № S4. P. 381. https://doi.org/10.1186/s12864-022-08602-9
- Ulitsky I. Evolution to the rescue: Using comparative genomics to understand long non-coding RNAs // Nat. Rev. Genet. 2016. V. 17. № 10. P. 601–614.
- Wang H., Niu Q.W., Wu H.W. et al. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lnc RNAs associated with agriculture traits // Plant J. 2015. V. 84. № 2. P. 404–416. https://doi.org/10.1111/tpj.13018
- Nitsche A., Stadler P.F. Evolutionary clues in lncRNAs // WIREs RNA. 2017. V. 8. № 1. https://doi.org/10.1002/wrna.1376
- Sang S., Chen W., Zhang D. et al. Data integration and evolutionary analysis of long non-coding RNAs in 25 flowering plants: 3 // BMC Genomics. 2021. V. 22. № 3. P. 739. https://doi.org/10.1186/s12864-021-08047-6
- Zhang Y.-C., Liao J.Y., Li Z.Y. et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice // Genome Biol. 2014. V. 15. № 12. P. 512. https://doi.org/10.1186/s13059-014-0512-1
- Pronozin A.Y., Bragina M.K., Salina E.A. Crop pangenomes // Vavilov. J. Genet. Breed. 2021. V. 25. № 1. P. 57.
- Vernikos G., Medini D., Riley D.R., Tettelin H. et al. Ten years of pan-genome analyses // Curr. Opin. Microbiol. 2015. V. 23. P. 148–154.
- Lapierre P., Gogarten J.P. Estimating the size of the bacterial pan-genome // Trends Genet. 2009. V. 25. № 3. P. 107–110.
- Chekanova J.A., Gregory B.D., Reverdatto S.V. et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome // Cell. 2007. V. 131. № 7. P. 1340–1353.
- Medina C.A., Samac D.A., Yu L.-X. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.) // Sci. Rep. 2021. V. 11. № 1. P. 17203.
- Jin M., Liu H., He C. et al. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation // Sci. Rep. 2016. V. 6. № 1. P. 18936.
- Chowdhary A., Satagopam V., Schneider R. Long non-coding RNAs: Mechanisms, experimental, and computational approaches in identification, characterization, and their biomarker potential in cancer // Front. Genet. 2021. V. 12. https://doi.org/10.3389/fgene.2021.649619
- Svergun D.I., Koch M.H. Small-angle scattering studies of biological macromolecules in solution // Rep. Prog. Phys. 2003. V. 66. № 10. P. 1735.
- Schön P. Atomic force microscopy of RNA: State of the art and recent advancements // Seminars in Cell & Developmental Biology. 2018. V. 73. P. 209–219.
- Chillón I., Marcia M., Legiewicz M. et al. Native purification and analysis of long RNAs // Methods in Enzymology. 2015. V. 558. P. 3–37.
- Cheung F., Haas B.J., Goldberg S.M.D. et al. Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology // BMC Genomics. 2006. V. 7. № 1. https://doi.org/10.1186/1471-2164-7-272
- Au P.C.K., Zhu Q.-H. Identification of lncRNAs using computational and experimental approaches // Regulatory RNAs / Eds Mallick B., Ghosh Z. Berlin; Heidelberg: Springer, 2012. P. 319–340.
- Babak T., Blencowe B.J., Hughes T.R. A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription // BMC Genomics. 2005. V. 6. № 1. P. 104. https://doi.org/10.1186/1471-2164-6-104
- Shiraki T., Kondo S., Katayama S. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage // Proc. Natl Acad. Sci. USA. 2003. V. 100. № 26. P. 15776–15781. https://doi.org/10.1073/pnas.2136655100
- Merino E.J., Wilkinson K.A., Coughlan J.L., Weeks K.M. RNA structure analysis at single nucleotide resolution by Selective 2‘-Hydroxyl Acylation and Primer Extension (SHAPE) // J. Am. Chem. Soc. 2005. V. 127. № 12. P. 4223–4231. https://doi.org/10.1021/ja043822v
- Kertesz M., Wan Y., Mazor E. et al. Genome-wide measurement of RNA secondary structure in yeast // Nature. 2010. V. 467. № 7311. P. 103–107.
- Hawkes E.J., Hennelly S.P., Novikova I.V. et al. COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures // Cell Rep. 2016. V. 16. № 12. P. 3087–3096.
- Kim D.N., Thiel B.C., Mrozowich T. et al. Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution // Nat. Commun. 2020. V. 11. № 1. P. 148.
- Li A., Zhang J., Zhou Z. PLEK: A tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme // BMC Bioinformatics. 2014. V. 15. № 1. P. 311. https://doi.org/10.1186/1471-2105-15-311
- Kang Y.-J., Yang D.C., Kong L. et al. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features // Nucl. Acids Res. 2017. V. 45. № W1. P. W12–W16.
- Wang L., Park H.J., Dasari S. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model // Nucl. Acids Res. 2013. V. 41. № 6. P. e74.
- Da Costa Negri T., Paschoal A.R., Alves W.A.L. Comparison tools for lncRNA identification: Analysis among plants and humans // 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE. 2020. P. 1–8.
- Pronozin A.Y., Afonnikov D.A. ICAnnoLncRNA: A snakemake pipeline for a long non-coding-RNA search and annotation in transcriptomic sequences // Genes. MDPI. 2023. V. 14. № 7. P. 1331.
- Gong Y., Huang H.T., Liang Y. et al. lncRNA-screen: An interactive platform for computationally screening long non-coding RNAs in large genomics datasets // BMC Genomics. 2017. V. 18. № 1. P. 434. https://doi.org/10.1186/s12864-017-3817-0
- Кит О.И., Кириченко Е.Ю., Кириченко Ю.Г. и др. Длинные некодирующие РНК, ассоциированные с канцерогенезом: биологическое значение и перспективы применения в диагностике // Клин. лаб. диагностика. 2016. Т. 61. № 1. P. 13–16.
- Gao L., Gonda I., Sun H. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor // Nat. Genet. 2019. V. 51. № 6. P. 1044–1051.
Дополнительные файлы
