Influence of Large-Scale Auroral Inhomogeneities on the Radio Waves Passage under Conditions of Moderate Geomagnetic Storm

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We analyze the experimental results of multi-frequency oblique radio sounding of the ionosphere on the meridional transauroral radio path Norilsk-Irkutsk during the moderate geomagnetic storm on September 22, 2018 with a maximum value of the disturbance index Kp ~ 5. Based on the Global Dynamic Model of the Ionosphere (GDMI) ionosphere model, which takes into account the dynamic state of the basic large-scale structures of the polar ionosphere: the main ionospheric trough (GIP), polar oval and auroral E-layer, general correspondence of maximum observed frequencies (MOF 1F2) and calculated maximum usable frequencies (MUF 1F2) variations in the geomagnetic disturbance dynamics is shown. A physical explanation is given for the recorded phenomenon of complete blocking the radio waves transmission in local night conditions (“blackout”). The main factor of this effect manifestation is a presence of the auroral layer E in the ionosphere, generated by precipitating charged particles, highly inhomogeneous in the longitudinal section of the radio path. Under daytime conditions, the presence of auroral component in the E-layer leads to a weaker effect of degradation the multiple reflections traces on oblique radio sounding ionograms.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Krasheninnikov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: krash@izmiran.ru
Ресей, Troitsk

V. Shubin

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: shubin@izmiran.ru
Ресей, Troitsk

Әдебиет тізімі

  1. Акасофу С.И. Полярные и магнитосферные суббури // М: Мир, 320 с. 1971.
  2. Боярчук К.А., Иванов-Холодный Г.С., Коломийцев О.П. и др. Отклик среднеширотной ионосферы Земли на экстремальные события на Солнце в октябре–ноябре 2003 г. // Геомагнетизм и аэрономия. Т. 45. № 1. С. 84–91. 2005.
  3. Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы // М: Наука, 527 с., 1988.
  4. Веселовский И.С., Панасюк М.И., Авдюшин С.И. и др. Солнечные и гелиосферные явления в октябре – ноябре 2003 г.: причины и следствия // Космич. исслед. Т. 42. №5. С. 456–488. 2004.
  5. Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366–373. 2018. https://doi.org/10.7868/S0016794018030070
  6. Деминов М.Г., Шубин В.Н., Бадин В.И. Модель критической частоты Е-слоя для авроральной области // Геомагнетизм и аэрономия. Т. 61. № 5. С. 610–617. 2021. https://doi.org/10.31857/S0016794021050059
  7. Дэвис К. Радиоволны в ионосфере. М.: Мир. 502 с. 1973.
  8. Кища П.В., Крашенинников И.В., Лукашкин В.М. Моделирование многочастотного распространения КВ-сигналов в высоких широтах // Геомагнетизм и аэрономия. Т. 31. № 1. C. 158–162. 1993.
  9. Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика неоднородных сред, М., “Наука”, 304 с., 1980.
  10. Крашенинников И.В., Павлова Н.М., Ситнов Ю.С. Модель IRI в задаче прогнозирования ионосферного прохождения радиоволн в условиях высокой солнечной активности // Геомагнетизм и аэрономия. Т. 57. № 6. С. 774–782. 2017. https://doi.org/10.7868/S0016794017060050
  11. Крашенинников И.В., Шубин В.Н. Частотная зависимость энергетических параметров волнового поля на предельной дальности односкачкового распространения радиоволн в условиях низкой солнечной активности // Геомагнетизм и аэрономия. Т. 60. № 2. С. 220–228. 2020. https://doi.org/10.31857/S001679402002008X
  12. Крашенинников И.В., Шубин В.Н. Проявление аврорального Е-слоя в данных радиозондирования ионосферы в условиях геомагнитной бури низкой интенсивности (трансавроральная радиотрасса) // Гелиогеофизические исслед. Т. 42. С. 29–39. 2024.
  13. Куркин В.И., Полех Н.М., Золотухина Н.А. Влияние слабых магнитных бурь на характеристики распространения КВ-радиоволн // Геомагнетизм и аэрономия. Т. 62. № 2. С. 245-256. 2022. https://doi.org/10.31857/S0016794022020110
  14. Шубин В.Н., Деминов М.Г. Глобальная динамическая модель критической частоты F2-слоя ионосферы // Геомагнетизм и аэрономия. Т. 59. № 4. C. 461–473. 2019. https://doi.org/10.1134/S0016794019040151
  15. Akasofu S.I. The dynamic aurora // Sci. Am. (ISSN 0036-8733). V. 260. P. 90–97.1989.
  16. Besprozvannaya A.S., Shirochkov A.V. and Shchuka T.I. The dynamics of the high latitude ionospheric E region // J. Atmos. Terr. Phys. V. 42. P. 115–123. 1980. https://doi.org/10.1016/0021-9169(80)90071-9
  17. Bilitza D., Radicella S., Reinisch B., Adeniyi J., Mosert M., Zhang S., Obrou O. New B0 and B1 models for IRI //Adv. Space Res. V.25. N. 1. P. 89–95. 2000. https://doi.org/10.1016/S0273-1177(99)00902-3
  18. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions // Space Weather. V.15. P. 418–429. 2017. https://doi.org/10.1002/2016SW001593
  19. Cameron T.G., Fiori R.A.D., Warrington E.M. et al. Evaluation of the effect of sporadic-E on high frequency radio wave propagation in the Arctic // J. Atmos. Sol.-Terr. Phys. V. 228. 105826. 2022. https://doi.org/10.1016/j.jastp.2022.105826
  20. Danilov A.D., Laštovička J. Effects of geomagnetic storms on the ionosphere and atmosphere // Int. J. Geomagn. Aeron. V. 2. № 3. P. 209–224. 2001.
  21. Hunsucker R.D., Hargreaves J.K. The High-Latitude Ionosphere and its Effects on Radio Propagation // Cambridge University Press. New York. 617 p. 2003. https://doi.org/10.1017/CBO9780511535758
  22. Milan S.E., Jones T.B. and Warrington E.M. Enhanced MUF propagation of HF radio waves in the aurora1 zone // J. Atmos. Solar-Terr. Phys. V. 59. N. 2. P. 237–248. 1997. https://doi.org/10.1016/S1364-6826(96)00031-4
  23. Nava B., Coпsson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model //J. Atmos. Sol.-Terr. Phys. V. 70 N. 15. P. 1856–1862. 2008. https://doi.org/10.1016/j.jastp.2008.01.015
  24. Nikolaeva V., Gordeev E., Sergienko T. et al. AIM-E: E-Region Auroral Ionosphere Model // Atmosphere, 12. 748.2021. https://doi.org/10.3390/atmos12060748
  25. Ruck J.J., Themens D.R. Impacts of auroral precipitation on HF propagation: A hypothetical over-the- horizon radar case study // Space Weather. 19. e2021SW002901. 2021. https://doi.org/10.1029/2021SW002901
  26. Yermolaev Yu.I. and Yermolaev M.Yu. Solar and Interplanetary Sources of Geomagnetic Storms: Space Weather Aspects // Izv. Atmos. Ocean Phys. V. 46. N. 7. P. 799–819. 2010.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The left panel shows the spatial position of global large-scale inhomogeneities of the auroral region of the ionosphere during the superstorm on 29.10.2003 20:00 UT using the GDMI model. The equatorial boundary of the oval is curve 0, the position of the GIP minimum is curve 1 (MIT); the position of st. IZMIRAN is marked by a bold dot. Manifestation of the auroral E-layer of the ionosphere on the ionogram of VZ of IZMIRAN station 29.10.2003 20:00 UT (22:00 LT) - upper right panel and, correspondingly, the aurora above Moscow (Troitsk) in the east-west direction - lower right panel. Translated with DeepL.com (free version)

Жүктеу (410KB)
3. Fig. 2. Vertical profiles of electron concentration on 05 December 2007 00:36:36 UT: (a) AIM-E model - curve 0, EISCAT UHF incoherent scattering radar data - curve 1; (b) - vertical profiles of electron concentration calculated by IRI-2016 models - curve 0, GDMI with profile [Bilitza et al, 2000] - curve 1 and GDMI with NeQuick profile - curve 2; (c) - vertical profiles of IRI-2016, GDMI and NeQuick models of electron concentration with NmE corresponding to the radar data in Tromsø.

Жүктеу (192KB)
4. Fig. 3. Time course of the 1F2 MHR at the trans-Auroral Norilsk-Irkutsk radiotracer 19.09.2018 - 24.09.2018: hollow circles - experimental values, curve 0 - monthly averages and curve 1 - daily dependences for the GDMI ionospheric model. The lower panels represent the time dependence of the heliogeophysical data: F10.7 and ap-index. The horizontal line indicates the threshold level separating the quiet and perturbed state of the geomagnetic field.

Жүктеу (276KB)
5. Fig. 4. Position of the ISU and auroral oval in the latitudinal dependence of foF2 on the longitude of the midpoint of the Norilsk - Irkutsk radio route in calm conditions on 20.09.2018 (left panel) and during the ionospheric storm on 22.09.2023 (right panel) in the GDMI model at 18:00 UT. The GDMI model is a solid curve, IRI is a dashed curve.

Жүктеу (164KB)
6. Fig. 5. Left panel - position of the GDMI and auroral layer E of the ionosphere in calm conditions (20.09.2018 18:00 UT, curves 0) and in perturbed conditions (22.09.2018 18:00 UT, curves 1). Right panel - ray trajectories for the 6 MHz frequency in the GDMI model illustrating the ‘blackout’ effect on the Norilsk - Irkutsk slant radiosonde radiotracer during the ionospheric storm.

Жүктеу (189KB)
7. Fig. 6. Ionograms of inclined radiosonding of the ionosphere at local near-afternoon time in calm geomagnetic conditions on 20.09.18 07:23 UT and during a geomagnetic storm on 22.09.1805:18 UT - experimental (upper panel) and synthesised in the GDMI model (lower panel).

Жүктеу (411KB)

© Russian Academy of Sciences, 2024