Study of Geomagnetic Disturbances from Satellite Data in Magnetic Storm on 8–9 March 1970

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this study, we consider historical geomagnetic satellite data obtained during a strong magnetic storm on March 8−9, 1970. In addition to the data of the Soviet satellite Kosmos-321, data from the American satellite OGO-6, which performed geomagnetic measurements at the same time, were used. We analyzed time variations of external magnetic fields recorded in satellite and ground-based observations of the magnetic field. The research also gave impetus to the creation of the improved software implementation of the auroral oval model APM, which enables reconstruction of its position and precipitation intensity in both the past and near real time. The magnetic variations originating in the near-Earth space from various sources were identified. In particular, we revealed the signatures of the storm-time ring current and equatorial and auroral electrojects. The paper highlights the enduring value of historical data of magnetic field observations stored in data centers and continuously digitized by their staff.

Texto integral

Acesso é fechado

Sobre autores

A. Soloviev

Geophysical Center RAS; Schmidt Institute of Physics of the Earth RAS

Autor responsável pela correspondência
Email: a.soloviev@gcras.ru
Rússia, Moscow; Moscow

I. Belov

Geophysical Center RAS

Email: i.belov@gcras.ru
Rússia, Moscow

A. Vorobev

Geophysical Center RAS; Ufa University of Science and Technology

Email: geomagnet@list.ru
Rússia, Moscow; Ufa

V. Sergeyev

Geophysical Center RAS

Email: v.sergeev@gcras.ru
Rússia, Moscow

Bibliografia

  1. Воробьев А.В., Пилипенко В.А., Решетников А.Г., Воробьева Г.Р., Белов М.Д. Веб-ориентированная визуализация геофизических параметров в области аврорального овала // Научная визуализация. Т. 12. № 3. С. 108–118. 2020. https://doi.org/10.26583/sv.12.3.10
  2. Воробьев А.В., Соловьев А.А., Пилипенко В.А., Воробьева Г.Р. Интерактивная компьютерная модель для прогноза и анализа полярных сияний // Солнечно-земная физика. Т. 8. № 2. С. 93–100. 2022. https://doi.org/10.12737/szf-82202213
  3. Долгинов Ш.Ш., Жигалов Л.Н., Струнникова Л.В., Фельдштейн Я.И., Черевко Т.Н., Шарова В.А. Магнитная буря 8-10 марта 1970 г. по наблюдениям на спутнике “Космос-321” и на поверхности Земли. I. Морфология возмущения // Геомагнетизм и аэрономия. Т. 12. № 6. С. 1046–1058. 1972.
  4. Долгинов Ш.Ш., Козлов А.Н., Колесова В.И. и др. Каталог измеренных и вычисленных значений модуля напряженности геомагнитного поля вдоль орбит спутника “Космос-321”. М.: Наука, 179 c. 1976.
  5. Долгинов Ш.Ш., Наливайко В.И., Тюрмин А.В., Чинчевой М.М., Бродская Р.Е., Злотин Г.Н., Кикнадзе И.Н., Тюрмина Л.О. Каталог измеренных и вычисленных значений модуля напряженности геомагнитного поля вдоль орбит спутника “Космос-49”. 24 октября – 4 ноября. Ред. В.П. Орлов. М.: ИЗМИРАН (в 3-х томах). 1967.
  6. Ермолаев Ю.И., Ермолаев М.Ю., Лодкина И.Г., Николаева Н.С. Статистическое исследование гелиосферных условий, приводящих к магнитным бурям // Космич. исслед. Т. 45. № 1. С. 3-11. 2007. https://doi.org/10.1134/S0010952507010017
  7. Соловьев А.А. Некоторые задачи геомагнетизма, решаемые по данным наземных и спутниковых наблюдений // Геология и геофизика. Т. 64. № 9. С. 1330–1356. 2023. https://doi.org/10.15372/GiG2023112
  8. Alken P., Thébault E., Beggan C.D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. V. 73. № 49. 2021. https://doi.org/10.1186/s40623-020-01288-x
  9. Cain J.C., Hendricks S.J., Hudson W.V., Langel R.A. A proposed model for the international geomagnetic reference field-1965 // J. Geomagn. Geoelectr. V. 19. № 4. P. 335–355. 1967. https://doi.org/10.5636/jgg.19.335
  10. Formisano V. On the March 7–8, 1970, event // J. Geophys. Res.:Space Physics. V. 78. № 7. P. 1198–1202. 1973. https://doi.org/10.1029/JA078i007p01198
  11. Friis-Christensen E., Lühr H., Hulot G. Swarm: A constellation to study the Earth’s magnetic field // Earth, Planets and Space. V. 58. № 4. P. 351–358. 2006. https://doi.org/10.1186/BF03351933
  12. Holme R., James M.A., Lühr H. Magnetic field modelling from scalar-only data: Resolving the Backus effect with the equatorial electrojet // Earth, Planets and Space. V. 57. № 12. P. 1203–1209. 2005. https://doi.org/10.1186/BF03351905
  13. Jackson J.E., Vette J.I. OGO Program Summary. Washington, D.C., USA: NASA, 330 р. 1975.
  14. Khokhlov A., Hulot G., Le Mouel J.-L. On the Backus effect—I // Geophys. J. Int. V. 130. № 3. P. 701–703. 1997. https://doi.org/10.1111/j.1365-246X.1997.tb01864.x
  15. Kozyreva O.V., Pilipenko V.A., Soloviev A.A., Engebretson M. J. Virtual magnetograms - a tool for the study of geomagnetic response to the solar wind/IMF driving // Russ. J. Earth Sci. V. 19. № 2. 2019. https://doi.org/10.2205/2019ES000654
  16. Krasnoperov R., Peregoudov D., Lukianova R., Soloviev A., Dzeboev B. Early Soviet satellite magnetic field measurements in the years 1964 and 1970 // Earth Syst. Sci. Data. V. 12. № 1. P. 555–561. 2020. https://doi.org/10.5194/essd-12-555-2020
  17. Love J.J., Chulliat A. An international network of magnetic observatories // Eos. V. 94. № 42. P. 373–374. 2013. https://doi.org/10.1002/2013EO420001
  18. Lühr H., Maus S., Rother M. Noon-time equatorial electrojet: its spatial features as determined by the CHAMP satellite // J. Geophys. Res. V. 109. № A1. 2004. https://doi.org/10.1029/2002JA009656
  19. Mandea M. Magnetic satellite missions: where have we been and where are we going? // Cr. Geoscience. V. 338. № 14–15. P. 1002–1011. 2006. https://doi.org/10.1016/j.crte.2006.05.011
  20. Meng X., Tsurutani B.T., Mannucci A.J. The solar and interplanetary causes of superstorms (minimum Dst ≤ −250 nT) during the space age // J. of Geophys. Res.: Space Physics. V. 124. № 6. P. 3926–3948. 2019. https://doi.org/10.1029/2018JA026425
  21. Newell P.T., Liou K., Zhang Y., Sotirelis T., Paxton L.J., Mitchell E. J. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels // Space Weather. V. 12. № 6. P. 368–379. 2014. https://doi.org/10.1002/2014SW001056
  22. Olsen N., Hulot G., Sabaka T.J. Measuring the Earth’s Magnetic Field from Space: Concepts of Past, Present and Future Missions // Space Sci. Rev. V. 155. P. 65–93. 2010. https://doi.org/10.1007/s11214-010-9676-5
  23. Petrov V.G., Krasnoperov R.I. The aspects of K-index calculation at Russian Geomagnetic Observatories // Russ. J. Earth Sci. V. 20. № 6. 2020. https://doi.org/10.2205/2020ES000724
  24. Skuridin G.A. Mastery of outer space in the USSR, 1957–1967 (translation of “Osvoyeniye kosmicheskogo Prostranstva v SSSR, 1957–1967”, Moscow, “Nauka” Press, 1971). Washington, D.C., USA: NASA. 1975.
  25. Soloviev A.A., Peregoudov D.V. Verification of the geomagnetic field models using historical satellite measurements obtained in 1964 and 1970 // Earth, Planets and Space. V. 74. № 187. 2022. https://doi.org/10.1186/s40623-022-01749-5
  26. Stern D.P., Bredekamp J.H. Error enhancement in geomagnetic models derived from scalar data // J. Geophys. Res. V. 80. № 13. P. 1776–1782. 1975. https://doi.org/10.1029/JA080i013p01776
  27. Vorobev A.V., Pilipenko V.A., Krasnoperov R.I., Vorobeva G.R., Lorentzen D.A. Short-term forecast of the auroral oval position on the basis of the “virtual globe” technology // Russ. J. Earth Sci. V. 20. № 6. 2020. https://doi.org/10.2205/2020ES000721
  28. Vorobev A.V., Soloviev A.A., Pilipenko V.A., Vorobeva G.R. Internet application for interactive visualization of geophysical and space data: approach, architecture, technologies // Journal of the Earth and Space Physics. V. 48. № 4. P. 151–160. 2023. https://doi.org/10.22059/jesphys.2023.350281.1007467
  29. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies // J. Atmos. Sol.- Terr. Phys. V. 102. P. 157–171. 2013. https://doi.org/10.1016/j.jastp.2013.05.007
  30. Yamazaki Y., Maute A. Sq and EEJ – A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents // Space Sci. Rev. V. 206. P. 299–405. 2017. https://doi.org/10.1007/s11214-016-0282-z

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig 1. Dst-index values from January 20 to March 13, 1970 (https://omniweb.gsfc.nasa.gov).

Baixar (16KB)
3. Fig. 2. Parameters of the interplanetary magnetic field and solar wind for March 6-10, 1970: (a) - components Bz and By in the GSE coordinate system, velocity V and density n; (b) - geomagnetic activity indices Kp, AE and Dst. The circles on the Dst plot indicate the time marks of rotations 744, 745-746 and 760 of the Cosmos-321 satellite.

Baixar (75KB)
4. Fig. 3. Turns of the Cosmos-321 satellite, the data for which are given in the catalog [Dolginov et al., 1976], with their numbers indicated.

Baixar (39KB)
5. Fig. 4. Flight of Cosmos-321 satellite over the polar cap of the southern hemisphere at turn 760 in the coordinates “corrected geomagnetic latitude”-“local magnetic time”. The satellite trajectory with UT counts, the perturbed field component δT along the trajectory, and the position of the auroral oval are shown [Dolginov et al., 1972].

Baixar (22KB)
6. Fig. 5. Variability of the perturbed component of the dF field for the period from 00:00 UT on March 8 to 23:59 UT on March 9, 1970. Black indicates overflights on the night side, gray - on the day side.

Baixar (43KB)
7. Fig. 6. Character of changes in the perturbed component of the field dF per revolution q1 according to the OGO-6 satellite data with additional parameters: (a) - the diamond marks the values of the AE index (time resolution of the original data - 1 hour), the circle marks the Kp index (resolution of the original data - 3 hours), the cross marks the Dst index (resolution of the original data - 1 hour); (b) - the diamond marks the values of the solar wind speed, the circle marks the plasma temperature, the cross marks the proton density (resolution of all these data - 1 hour). The legend and the scale for additional parameters are on the right side of the graph. Vertical dashed lines mark the place of crossing of the conditional terminator (change of day side to night side and vice versa).

Baixar (86KB)
8. Fig. 7. Character of changes in the perturbed component of the field dF per revolution q2 from the data of the OGO-6 satellite. The notations are similar to Fig. 6а.

Baixar (42KB)
9. Fig. 8. Character of changes in the perturbed component of the field dF from the data of the OGO-6 satellite: (a) - for a spiral d1

Baixar (38KB)
10. Fig. 8 (continued). Character of changes in the perturbed component of the dF field according to the OGO-6 satellite data: (b) - for the d2 spiral, (c) - for the d3 spiral, (d) - for the d4 spiral. The designations are similar to Fig. 6.

Baixar (121KB)
11. Fig. 9. Areas of diffuse rashes (A), auroral oval (B), and soft diffuse rashes (C): (a) at 06:00 UT on March 6, 1970 (~roll q1), (b) at 23:00 UT on March 9, 1970 (~roll d4), (c) at 12:00 UT on March 10, 1970 (~roll q2). The dotted line shows fragments of the satellite trajectories when crossing the polar region and indicates the UT time marks at their ends. The maps are given in “geographic latitude”-“local time” coordinates. The maps are constructed according to the improved software implementation of the APM auroral precipitation model.

Baixar (75KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024