X-ray diffraction tomography: image filtering by singular value decomposition and 1D smoothing Whittaker-Eilers methods

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Digital processing of the 2D noisy X-ray diffraction images (2D-XDI) of a single point defect in Si(111) crystal, registered at the level of dispersion of statistical Gaussian noise of the detector using filtering methods such as singular value decomposition and 1D-line-by-line smoothing of test 2D-XDIs, is carried out. The efficiency of digital filtering of 2D-XDI is evaluated and analyzed by means of control parameter FOM (figure-of-merit) value of reconstruction of the displacement field function of a point defect of Coulomb type fh(rr0), (h – diffraction vector, r0 – radius-vector of the defect position in the sample). It is shown that the filtering technique using the singular value decomposition of 2D-XDI works significantly better than the 1D linear-by-line smoothing method of 2D-XDI, which, apparently, in relation to our problem requires further research on its improvement.

Full Text

Restricted Access

About the authors

F. N. Chukhovskii

National Research Center “Kurchatov Institute”

Author for correspondence.
Email: f_chukhov@yahoo.ca

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

P. V. Konarev

National Research Center “Kurchatov Institute”

Email: f_chukhov@yahoo.ca

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

V. V. Volkov

National Research Center “Kurchatov Institute”

Email: f_chukhov@yahoo.ca

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

References

  1. Chapman H.N. // Ultramicroscopy. 1996. V. 66. P. 153. https://doi.org/10.1016/S0304-3991(96)00084-8
  2. Rodenburg J.M., Hurst A.C., Cullis A.G. et al. // Phys. Rev. Lett. 2007. V. 98. P. 034801. https://doi.org/10.1103/PhysRevLett.98.034801
  3. Chapman H.N., Nugent K.A. // Nature Photonics. 2010. V. 4. P. 833. https://doi.org/10.1038/nphoton.2010.240
  4. Chapman H.N. // Nature. 2010. V. 467. P. 409. https://doi.org/10.1038/467409a
  5. Danilewsky A.N., Wittge J., Croell A. et al. // J. Cryst. Growth. 2011. V. 318. P. 1157. https://doi.org/10.1016/j.jcrysgro.2010.10.199
  6. Hänschke D., Danilewsky A., Helfen L. et al. // Phys. Rev. Lett. 2017. V. 119. P. 215504. https://doi.org/10.1103/PhysRevLett.119.215504
  7. Asadchikov V., Buzmakov A., Chukhovskii F. et al. // J. Appl. Cryst. 2018. V. 51. P. 1616. https://doi.org/10.1107/S160057671801419X
  8. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Acta Cryst. A. 2020. V. 76. P. 163. https://doi.org/10.1107/S2053273320000145
  9. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Crystals. 2023. V. 13. P. 561. https://doi.org/10.3390/cryst13040561
  10. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Crystals. 2024. V. 14. P. 29. https://doi.org/10.3390/cryst14010029
  11. Чуховский Ф.Н., Волков В.В., Конарев П.В. Способ сбора и обработки данных рентгеновской дифракционной микротомографии. Патент. RU 2 824 297 C1 Рос. Фед. № 2008121372/04.
  12. Hendriksen A.A., Bührer M., Leone L. et al. // Sci. Rep. 2021. V. 11. P. 11895. https://doi.org/10.1038/s41598-021-91084-8
  13. Hamming R.W. Numerical Methods for Scientists and Engineers. New York: McGraw-Hill, 1961. 721 p.
  14. Бондаренко В.И., Рехвиашвили C.Ш., Чуховский Ф.Н. // Кристаллография. 2024. Т. 69. С. 755. https://doi.org/10.31857/S0023476124050012
  15. Eilers P.H.C. // Anal. Chem. 2003. V. 75. P. 3631. https://doi.org/10.1021/ac034173t
  16. Jha S.K., Yadava R.D.S. // IEEE Sensors J. 2011. V. 11. P. 35. https://doi.org/10.1109/JSEN.2010.2049351
  17. Golub G.H., Van Loan C.F. Matrix Computations. 4th Ed. Baltimore: Johns Hopkins Univ. Press, 2013. 756 p. Ch. 2.
  18. Yang W., Hong J.-Y., Kim J.-Y. et al. // Sensors. 2020. V. 20. P. 3063. https://doi.org/10.3390/s20113063
  19. Durbin J., Watson G.S. // Biometrika. 1971. V. 58. P. 1. https://doi.org/10.2307/2334313
  20. Деянов Р.З., Щедрин Б.М., Бурова Е.М. // Вычислительные методы и программирование. Вып. 39. М.: Изд-во МГУ, 1983. С. 55.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix 1
Download (123KB)
3. Appendix 2
Download (112KB)
4. Fig. 1. Schematic diagram of 2D X-ray diffraction microtomography data acquisition. The data set is collected at a sample rotation angle Φ around the diffraction vector, θB is the Bragg angle.

Download (85KB)
5. Fig. 2. Noise-free reference 2D X-ray diffraction data (181 × 181 pixels) (a). Dependence of 2D X-ray diffraction singular values on their ordinal number (b). The inset shows the region corresponding to the first 30 singular values of the SVD decomposition of the 2D X-ray diffraction data. The sharp change in the slope of the curve, which occurs in the region of the 24th SV, is highlighted with a circle.

Download (156KB)
6. Fig. 3. Original 2D X-ray diffraction data (181 × 181 pixels) with the addition of 5% Gaussian noise (a). Dependence of 2D X-ray diffraction singular values on their ordinal number (b). The inset shows the region corresponding to the first 20 singular values of the SVD decomposition of the 2D-RDI data. The slope of the curve changes after the eighth SV. The circle highlights the SV range where the quality of reconstruction of the defect displacement field function fh(r–r0) improves in the process of solving the inverse Radon problem. 2D-RDI data calculated using the modified Whittaker–Eilers algorithm (c). 2D-RDI data calculated using the SVD decomposition over the first 11 SVs (d).

Download (232KB)

Copyright (c) 2025 Russian Academy of Sciences