High-performance numerical method for searching the effective thermal conductivity of media with inhomogeneous macrostructure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

When solving engineering problems, it is often necessary to know the physical properties of porous media with complex internal structure. In this paper we propose a technique for numerical modeling of heat conduction of this kind of bodies including non-conducting circular inclusions. This technique allows to calculate temperature fields and heat fluxes, as well as other parameters necessary for applications. One of such parameters demanded by practice is the effective thermal conductivity, which depends on the volume content of thermally insulated pores and their mutual location. The basis of the above studies is the indirect boundary element method proposed in this paper, based on pre-calculated analytical solutions, on which the decomposition is performed. In order to verify the developed methods, a comparison with the results of other authors is given in the paper. It showed a fairly good agreement.

Texto integral

Acesso é fechado

Sobre autores

A. Zvyagin

M.V. Lomonosov Moscow State University

Autor responsável pela correspondência
Email: zvsasha@rambler.ru
Rússia, Moscow

A. Udalov

M.V. Lomonosov Moscow State University; Scientific Research Institute for System Analysis RAS

Email: udalets@inbox.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Braginsky L., Shklover V., Witz G., Bossmann H.-P. Thermal conductivity of porous structures // Phys. Rev. B, 2007, vol. 75(9).
  2. Smith D., Alzina A., Bourret J. et al. Thermal conductivity of porous materials // J. of Mater. Res., 2013, vol. 28(17).
  3. Kachanov M., Tsukrov I., Shafiro B. Effective moduli of solids with cavities of various shapes // Appl. Mech. Rev., 1994, vol. 47.
  4. Kiradjiev K.B., Halvorsen S.A., Van Gorder R.A., Howison S.D. Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids // Int. J. of Thermal Sci., 2019, vol. 145.
  5. Klemens P.G. Thermal conductivity of inhomogeneous materials // Int. J. Thermophys., 1989, vol. 10, pp. 1213–1219.
  6. Sevostianov I., Kachanov M. Elastic and conductive properties of plasma-sprayed ceramic coatings in relation to their microstructure: An overview // J. of Thermal Spray Technol., 2009, vol. 18, pp. 822–834.
  7. Shafiro B., Kachanov M. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes // J. Appl. Phys., 2000, vol. 87(12), pp. 8561–8569.
  8. Wang Z., Kulkarni A., Deshpande S., Nakamura T., Herman H. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings // Acta Mater., 2003, vol. 51, iss. 18, pp. 5319–5334.
  9. Zvyagin A.V., Udalov A.S. A displacement discontinuity method of high-order accuracy in fracture mechanics // Moscow Univ. Mech. Bull., 2020, V. 75, pp. 153–159. https://doi.org/10.3103/S0027133020060060
  10. Zvyagin A.V., Udalov A.S., Shamina A.A. Boundary element method for investigating large systems of cracks using the Williams asymptotic series // Acta Astron., 2022, vol. 194, pp. 480–487.
  11. Zvyagin A.V., Udalov A.S., Shamina A.A. Numerical modeling of heat conduction in bodies with cracks // Acta Astron., 2023, vol. 214, pp. 196–201.
  12. Florence A.L., Goodier J.N. Thermal stresses due to disturbance of uniform heat flow by an insulated ovaloid hole // ASME. J. Appl. Mech., 1960, vol. 27(4), pp. 635–639.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The considered configuration of the medium

Baixar (120KB)
3. Fig. 2. Analytical and numerical results of the temperature field of the verification problem

Baixar (145KB)
4. Fig. 3. Dependence of the effective thermal conductivity coefficient on porosity

Baixar (123KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025