On gyroscopic stabilization of equilibria of nonlinear potential systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The problem of gyroscopic stabilization of the equilibrium position of nonlinear potential systems with a potential of a special kind is considered. The conditions of stabilization of the equilibrium position by attaching gyroscopic forces are obtained. Estimates from below for large parameters with matrices of gyroscopic forces guaranteeing stability of equilibrium in a closed system are given.

全文:

受限制的访问

作者简介

A. Kosov

Matrosov Institute for System Dynamics and Control Theory of SB RAS

编辑信件的主要联系方式.
Email: kosov_idstu@mail.ru
俄罗斯联邦, Irkutsk

参考

  1. Merkin D.R. Gyroscopic Systems. Moscow: Nauka, 1974. 344 p. (in Russian).
  2. Bulatovic R.M. On stability criteria for gyroscopic systems with negative definite stiffness // Univ. of Niš. The Sci. J. Facta Universitatis. Ser. Mech., Autom. Control & Robotics, 2000, vol. 2, no. 10, pp. 1081–1087.
  3. Karapetyan A.V. To the question of gyroscopic stabilization // Teorijska i Primenjena Mehanika, 1994, vol. 20, pp. 89–93.
  4. Bolotin S.V., Negrini P. Asymptotic trajectories of gyroscopic systems // MSU Bull. Ser. 1. Matem. Mech., 1993, no. 6, pp. 66–75.
  5. Kozlov V.V. Gyroscopic stabilization of degenerate equilibria and the topology of real algebraic varieties // Dokl. Math., 2008, vol. 77, iss. 3, pp. 412–415. https://doi.org/10.1134/S1064562408030253
  6. Gantmakher F.R. The Theory of Matrices. N.Y.: Chelsea, 1989–1990.
  7. Rumyantsev V.V., Oziraner A.S. Stability and Stabilization of Motion with Respect to a Part of Variables. Moscow: Nauka, 1987. 256 p. (in Russian).
  8. Lakhadanov V.M. On stabilization of potential systems // JAMM, 1975, vol. 39, iss. 1, pp. 45–50.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025