Method of coupled processes in studying diffusion of radioactive waste elements in the pore solution of clay materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method of coupled processes was proposed to maintain concentrations in the model leachate of the radioactive waste phosphate matrix, which served as a source of elements in the study of through-diffusion of P, Se, Br, Mo, Cs, and U in the pore solution of compacted clay materials. The method consisted in adding an leachatable solid phase to the solution in the source chamber of the diffusion cell. The use of this method made it possible to stabilize the boundary conditions and expand the range of element concentrations in the source chamber of diffusion cells. The new as-obtained data on the effective diffusion coefficients of radioactive waste elements in clay rocks were used to refine the empirical models of diffusion transfer. It is shown that in different geochemical systems (model groundwater and phosphate glass leachate) for some elements (Br, Mo, Cs) it is possible to use unified models in the form of effective diffusion coefficients as a function of factors influencing this process: sample porosity, smectite content in the sample, and concentration of radionuclide (element) in pore solution, while for Se and U, diffusion models for various geochemical systems differ. The specificity of diffusion behavior of elements is associated with structural features and physicochemical properties of particles of these elements in aqueous solutions.

Full Text

Restricted Access

About the authors

K. V. Martynov

Frumkin Institute of Physical Chemistry and Electrochemistry

Author for correspondence.
Email: mark0s@mail.ru
Russian Federation, Moscow, 119071

E. V. Zakharova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mark0s@mail.ru
Russian Federation, Moscow, 119071

References

  1. Garcia-Gutierrez M., Cormenzana J.L., Missana T., Mingarro M., Molinero J. // J. Iber. Geol. 2006. Vol. 32. N 1. P. 37.
  2. Wolfrum C., Lang H., Moser H., Jordan W. // Radiochim. Acta. 1988. Vol. 44/45. Р. 245.
  3. Lee C.-P., Hu Y., Chen D., Wu E., Wang Z., Wen Z., Tien N.-C., Yang F., Tsai S.-C., Shi Y., Liu Y.-L. // Materials. 2021. Vol. 14. N 22. P. 7056.
  4. Мартынов К.В., Коневник Ю.В., Захарова Е.В. // Радиохимия. 2023. Т. 65. № 4. С. 364.
  5. Martynov K.V., Zakharova E.V. // Radiochemistry. 2024. Vol. 66. N 2. P. 212–226.
  6. Вашман А.А., Демин А.В., Крылова Н.В., Кушников В.В., Матюнин Ю.И., Полуэктов П.П., Поляков А.С., Тетерин Э.Г. // Фосфатные стекла с радиоактивными отходами / Под ред. А.А. Вашмана, А.С. Полякова. – М.: ЦНИИатоминформ, 1997. – 172 с.
  7. Кочкин Б.Т., Мальковский В.И., Юдинцев С.В. Научные основы оценки безопасности геологической изоляции долгоживущих радиоактивных отходов (Енисейский проект). – М.: ИГЕМ РАН, 2017. – 384 с.
  8. Абрамов А. А., Большов Л. А., Дорофеев А. Н., Игин И. М., Казаков К. С., Красильников В. Я., Линге И. И., Трохов Н. Н., Уткин С. С. // Радиоактивные отходы. 2020. №1 (10). С. 9.
  9. Мартынов К.В., Захарова Е.В. // Радиоактивные отходы. 2023. № 2 (23). С. 63.
  10. Oscarson D. W., Hume H. B., Sawatsky N. G., H. Cheung S. C. // Soil Sci. Soc. Am. J. 1992. Vol. 56. N 5. P. 1400.
  11. Lee J.O., Cho W.J., Hahn P.S., Park H.H. // J. Korean J. Korean Nucl. Soc. 1994. Vol. 26. N 2. P. 285.
  12. Wu T., Li J., Dai W., Xiao G.-P., Shu F.-J., Yao J., Su Y.-L., Shi L. // Sci. China Chem. 2012. Vol. 55. P. 1760.
  13. Tachi Y., Yotsuji K. // Geochim. Cosmochim. Acta. 2014. Vol. 132. P. 75.
  14. Fukatsu Y., Yotsuji K., Ohkubo T., Tachi Y. // Appl. Clay Sci. 2021. Vol. 211. Art. 106176.
  15. Tsai T.-L., Tsai S.-C., Chang D.-M., Cheng W.-H. // J. Radioanal. Nucl. Chem. 2021. Vol. 330. P. 1317.
  16. Wang C., Myshkin V. F., Khan V. A., Panamareva A. N. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 3401.
  17. Wang Z., Wang H., Li O., Xu M., Guo Y., Li J., Wu T. // Appl. Geochem. 2016. Vol. 73. P. 1.
  18. Ochs M., Lothenbach B., Wanner H., Sato H., Yui M. // J. Contam. Hydrol. 2001. Vol. 47. P. 283.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the concentrations of elements in the source chamber solution during through diffusion from model solutions of MV (gray symbols) according to data from [5] and SMV (black symbols) with different initial concentrations through samples of clay materials KB (a), TZ (b) and HB (c).

Download (209KB)
3. Fig. 2. Stationary sections of the curves of the release of radioactive waste elements during through diffusion from model leachates in the presence of FS through compacted samples of clay materials: a – Cs, b – U, c – Se, d – Mo, d – Br, e – P.

Download (396KB)
4. Fig. 3. Stationary sections of the curves of the release of radioactive waste elements during through diffusion from a model leachate in the presence of FS through compacted samples of clay materials: a – KB, b – TB, c – TZ, d – HB, d – KV.

Download (371KB)
5. Fig. 4. Experimental data on the dependence of the effective diffusion coefficients on the skeletal density of clay materials for bromine (different clays, this work) and iodine: [2] – bentonite MX-80 (USA): 88.6% Na-smectite; [10] – Avonlea bentonite (Canada): 80% Na-smectite; [11] – bentonite (Korea); [12] – bentonite GMZ (China): 75.4% Na-Ca-montmorillonite; [13] – Kunipia-P: enriched with 99.9% Na-montmorillonite from Kunigel-V1 bentonite (Japan); [14] – Ca-montmorillonite (95%) obtained from Kunipia-F (95% Na-montmorillonite from Kunigel-V1 bentonite, Japan); [15] – bentonite MX-80 (USA): 88.6% Na-smectite.

Download (68KB)
6. Fig. 5. Dependences of De values ​​for radioactive waste elements during through diffusion in pore solutions of compacted clay materials on the total diffusion factor, taking into account the data of [4, 5]: a – Cs/(MPVI+MV+SMV), b – U/(MV+SMV), c – Se/(MV+SMV), d – Mo/(MPVI+SMV), d – Br/(MPVI+MV+SMV), e – P/SMV.

Download (227KB)

Copyright (c) 2024 Russian Academy of Sciences