Interference of strontium and yttrium cations and surfactants in competitive adsorption onto activated carbon: a radioatracer study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The interference of Sr(II) and Y(III) cations with cationic, anionic, and nonionic surfactants during competitive adsorption on lignin-produced activated carbon was studied. Dodecyltrimethylammonium bromide, sodium dodecylsulfate, and decaethylene glycol monododecyl ether (Brij-35) were used as surfactants. The radiotracers 90Sr/90Y and tritium were used to trace the equilibrium concentration of metal cations and the surface concentrations of the surfactants, respectively. Tritium-labeled surfactants were obtained using the tritium thermal activation technique. Liquid scintillation spectrometry was used to determine the concentration of all substances. The SpectraDec software was used for joint measurement of 90Sr/90Y and tritium radioactivity. It was shown that the presence of a surfactant affects the adsorption of strontium and yttrium onto activated carbon produced by thermochemical activation with orthophosphoric acid. The formation of a low-solubility precipitate with an anionic surfactant increased the adsorption of both cations, reduced their desorption, and promoted the sorption of the anionic surfactant itself. The nonionic surfactant (containing oxyethyl groups) did not affect the adsorption of strontium and yttrium cations but helped retain them on the carbon surface, preventing desorption. The cationic surfactant competed with strontium and yttrium cations for active sites on the activated carbon surface: adsorption of all components decreased, while desorption of cations increased.

Full Text

Restricted Access

About the authors

M. G. Chernysheva

Moscow State University

Author for correspondence.
Email: chernyshevamg@my.msu.ru

Department of Chemistry

Russian Federation, Leninskiye gory 1, str. 3, Moscow, 119991

O. A. Kangina

Moscow State University

Email: chernyshevamg@my.msu.ru

Department of Chemistry

Russian Federation, Leninskiye gory 1, str. 3, Moscow, 119991

Е. Ya. Spivak

Moscow State University

Email: chernyshevamg@my.msu.ru

Department of Chemistry

Russian Federation, Leninskiye gory 1, str. 3, Moscow, 119991

A. V. Gopin

Moscow State University

Email: chernyshevamg@my.msu.ru

Department of Chemistry

Russian Federation, Leninskiye gory 1, str. 3, Moscow, 119991

G. A. Badun

Moscow State University

Email: badunga@yandex.ru

Department of Chemistry

Russian Federation, Leninskiye gory 1, str. 3, Moscow, 119991

References

  1. Ioannidis I., Pashalidis I., Mulla B., Kotanidis G., Ioannou K., Constantinides G. et al. // Materials. 2023. Vol. 16. Article 7479.
  2. Lu S., Sun Y., Chen C. Adsorption of radionuclides on carbon-based nanomaterials // Interface Sci. Technol. Elsevier, 2019. P. 141–215.
  3. Lobacheva O., Dzhevaga N., Danilov A. // J. Ecol. Eng. 2016. Vol. 17. P. 38–42.
  4. Chakraborty A., Pal A., Saha B.B. // Materials. 2022. Vol. 15. Article 8818.
  5. Кулюхин С.А., Горбачева М.П., Красавина Е.П., Румер И.А. // Радиохимия. 2019. T. 61. C. 18–26.
  6. Данилин Л.Д., Дрожжин В.С. // Радиохимия. 2007. T. 49. C. 283–286.
  7. Süss M., Pfrepper G. // Radiochim. Acta. 1981. Vol. 29. P. 33–40.
  8. Mestre A.S., Pires J., Nogueira J.M.F., Parra J.B., Carvalho A.P., Ania C.O. // Bioresource Technol. 2009. Vol. 100. P. 1720–1726.
  9. Лишай Н.В., Савицкая Т.А., Цыганкова Н.Г., Гриншпан Д.Д., Чен Д. // Ж. Белорус. гос. ун-та. Химия. 2021. T. 1. C. 58–74.
  10. Liu C., Su Z., Xu L., Zhang L., Xie T., Wang Y. // Chin. J. Geochem. 2013. Vol. 32. P. 269–272.
  11. Mahmoud M.R., El-Deen G.E.S., Soliman M.A. // Ann. Nucl. Energy. 2014. Vol. 72. P. 134–144.
  12. Абрамзон А.А. Поверхностно-активные вещества: Свойства и применение. Л.: Химия, 1981. 304 c.
  13. Бадун Г.А., Чернышева М.Г. // Радиохимия. 2023. T. 65. C. 158–171.
  14. Кангина О.А., Чернышева М.Г., Бадун Г.А., Лишай А.В., Цыганкова Н.Г., Савицкая Т.А., Гриншпан Д.Д. // Коллоид. журн. 2024. Т. 86. № 1. С. 37–41.
  15. Савицкая Т.А., Невар Т.Н., Цыганкова Н.Г., Кривова М.Г., Резников И.В., Шахно А.Е., Везенцев А.И., Гриншпан Д.Д. // Свиридовские чтения: Сб. статей. Минск: БГУ, 2015. Вып. 11. С. 132–143.
  16. Badun G.A., Chernysheva M.G., Ksenofontov A.L. // Radiochim. Acta. 2012. Vol. 100. P. 401–408.
  17. Чернышева М.Г. Новый подход к определению структурных особенностей комплексов белок–лиганд на межфазных границах и в объеме раствора (на примере лизоцима): Дис. … д.х.н. М.: МГУ им. М.В. Ломоносова, 2022. 193 с.
  18. Zhang U., Xing Y., Xia Y., Guo F., Ding S., Tan J. et al. // ACS Omega. 2020. Vol. 5. P. 20630–20637.
  19. Hu Q., Zhang Z. // J. Mol. Liq. 2019. Vol. 277. P. 646–648.
  20. Nguyen C., Do D.D. // Carbon. 2001. Vol. 39. P. 1327–1336.
  21. Schott H. // J. Colloid Interface Sci. 1997. Vol. 192. P. 458–462.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Nitrogen adsorption/desorption isotherms on activated carbon.

Download (76KB)
3. Fig. 2. Dependence of surfactant adsorption on the total concentration of strontium and yttrium in the system: a – SDS, b – DTAB, c – Brij-35. The value of surfactant adsorption from an aqueous solution without added salts is shown by a thick dotted line, thin dotted lines are the confidence interval of surfactant adsorption from an aqueous solution without added salts.

Download (208KB)
4. Fig. 3. Adsorption isotherms of strontium (a) and yttrium (b) on activated carbon. ● – cation without surfactant, ◇ – SDS, ▲ – DTAB, ○ – Brij-35.

Download (109KB)

Copyright (c) 2025 Russian Academy of Sciences