Interference of strontium and yttrium cations and surfactants in competitive adsorption onto activated carbon: a radioatracer study

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The interference of Sr(II) and Y(III) cations with cationic, anionic, and nonionic surfactants during competitive adsorption on lignin-produced activated carbon was studied. Dodecyltrimethylammonium bromide, sodium dodecylsulfate, and decaethylene glycol monododecyl ether (Brij-35) were used as surfactants. The radiotracers 90Sr/90Y and tritium were used to trace the equilibrium concentration of metal cations and the surface concentrations of the surfactants, respectively. Tritium-labeled surfactants were obtained using the tritium thermal activation technique. Liquid scintillation spectrometry was used to determine the concentration of all substances. The SpectraDec software was used for joint measurement of 90Sr/90Y and tritium radioactivity. It was shown that the presence of a surfactant affects the adsorption of strontium and yttrium onto activated carbon produced by thermochemical activation with orthophosphoric acid. The formation of a low-solubility precipitate with an anionic surfactant increased the adsorption of both cations, reduced their desorption, and promoted the sorption of the anionic surfactant itself. The nonionic surfactant (containing oxyethyl groups) did not affect the adsorption of strontium and yttrium cations but helped retain them on the carbon surface, preventing desorption. The cationic surfactant competed with strontium and yttrium cations for active sites on the activated carbon surface: adsorption of all components decreased, while desorption of cations increased.

全文:

受限制的访问

作者简介

M. Chernysheva

Moscow State University

编辑信件的主要联系方式.
Email: chernyshevamg@my.msu.ru

Department of Chemistry

俄罗斯联邦, Leninskiye gory 1, str. 3, Moscow, 119991

O. Kangina

Moscow State University

Email: chernyshevamg@my.msu.ru

Department of Chemistry

俄罗斯联邦, Leninskiye gory 1, str. 3, Moscow, 119991

Е. Spivak

Moscow State University

Email: chernyshevamg@my.msu.ru

Department of Chemistry

俄罗斯联邦, Leninskiye gory 1, str. 3, Moscow, 119991

A. Gopin

Moscow State University

Email: chernyshevamg@my.msu.ru

Department of Chemistry

俄罗斯联邦, Leninskiye gory 1, str. 3, Moscow, 119991

G. Badun

Moscow State University

Email: badunga@yandex.ru

Department of Chemistry

俄罗斯联邦, Leninskiye gory 1, str. 3, Moscow, 119991

参考

  1. Ioannidis I., Pashalidis I., Mulla B., Kotanidis G., Ioannou K., Constantinides G. et al. // Materials. 2023. Vol. 16. Article 7479.
  2. Lu S., Sun Y., Chen C. Adsorption of radionuclides on carbon-based nanomaterials // Interface Sci. Technol. Elsevier, 2019. P. 141–215.
  3. Lobacheva O., Dzhevaga N., Danilov A. // J. Ecol. Eng. 2016. Vol. 17. P. 38–42.
  4. Chakraborty A., Pal A., Saha B.B. // Materials. 2022. Vol. 15. Article 8818.
  5. Кулюхин С.А., Горбачева М.П., Красавина Е.П., Румер И.А. // Радиохимия. 2019. T. 61. C. 18–26.
  6. Данилин Л.Д., Дрожжин В.С. // Радиохимия. 2007. T. 49. C. 283–286.
  7. Süss M., Pfrepper G. // Radiochim. Acta. 1981. Vol. 29. P. 33–40.
  8. Mestre A.S., Pires J., Nogueira J.M.F., Parra J.B., Carvalho A.P., Ania C.O. // Bioresource Technol. 2009. Vol. 100. P. 1720–1726.
  9. Лишай Н.В., Савицкая Т.А., Цыганкова Н.Г., Гриншпан Д.Д., Чен Д. // Ж. Белорус. гос. ун-та. Химия. 2021. T. 1. C. 58–74.
  10. Liu C., Su Z., Xu L., Zhang L., Xie T., Wang Y. // Chin. J. Geochem. 2013. Vol. 32. P. 269–272.
  11. Mahmoud M.R., El-Deen G.E.S., Soliman M.A. // Ann. Nucl. Energy. 2014. Vol. 72. P. 134–144.
  12. Абрамзон А.А. Поверхностно-активные вещества: Свойства и применение. Л.: Химия, 1981. 304 c.
  13. Бадун Г.А., Чернышева М.Г. // Радиохимия. 2023. T. 65. C. 158–171.
  14. Кангина О.А., Чернышева М.Г., Бадун Г.А., Лишай А.В., Цыганкова Н.Г., Савицкая Т.А., Гриншпан Д.Д. // Коллоид. журн. 2024. Т. 86. № 1. С. 37–41.
  15. Савицкая Т.А., Невар Т.Н., Цыганкова Н.Г., Кривова М.Г., Резников И.В., Шахно А.Е., Везенцев А.И., Гриншпан Д.Д. // Свиридовские чтения: Сб. статей. Минск: БГУ, 2015. Вып. 11. С. 132–143.
  16. Badun G.A., Chernysheva M.G., Ksenofontov A.L. // Radiochim. Acta. 2012. Vol. 100. P. 401–408.
  17. Чернышева М.Г. Новый подход к определению структурных особенностей комплексов белок–лиганд на межфазных границах и в объеме раствора (на примере лизоцима): Дис. … д.х.н. М.: МГУ им. М.В. Ломоносова, 2022. 193 с.
  18. Zhang U., Xing Y., Xia Y., Guo F., Ding S., Tan J. et al. // ACS Omega. 2020. Vol. 5. P. 20630–20637.
  19. Hu Q., Zhang Z. // J. Mol. Liq. 2019. Vol. 277. P. 646–648.
  20. Nguyen C., Do D.D. // Carbon. 2001. Vol. 39. P. 1327–1336.
  21. Schott H. // J. Colloid Interface Sci. 1997. Vol. 192. P. 458–462.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Nitrogen adsorption/desorption isotherms on activated carbon.

下载 (76KB)
3. Fig. 2. Dependence of surfactant adsorption on the total concentration of strontium and yttrium in the system: a – SDS, b – DTAB, c – Brij-35. The value of surfactant adsorption from an aqueous solution without added salts is shown by a thick dotted line, thin dotted lines are the confidence interval of surfactant adsorption from an aqueous solution without added salts.

下载 (208KB)
4. Fig. 3. Adsorption isotherms of strontium (a) and yttrium (b) on activated carbon. ● – cation without surfactant, ◇ – SDS, ▲ – DTAB, ○ – Brij-35.

下载 (109KB)

版权所有 © Russian Academy of Sciences, 2025