The influence of uranyl nitrate on exothermic processes in nitric acid solutions of reducing agents

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The thermal stability of nitric acid solutions of acetohydroxamic acid, carbohydrazide, hydrazine nitrate, and their mixtures was studied. The onset temperature of the exothermic reaction was determined, and the thermal effects of the reactions were calculated. The influence of uranyl nitrate on the thermal stability of reducing agents and their mixtures was studied. Comparison of the characteristics of exothermic processes in solutions with and without uranyl nitrate showed that the introduction of uranyl nitrate reduced the intensity of exothermic processes in all the nitric acid solutions studied.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Ob”edkov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: bl174@bk.ru
Ресей, Leninskii pr. 31, korp. 4, Moscow, 119071

A. Grishaev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: bl174@bk.ru
Ресей, Leninskii pr. 31, korp. 4, Moscow, 119071

E. Belova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: bl174@bk.ru
Ресей, Leninskii pr. 31, korp. 4, Moscow, 119071

Әдебиет тізімі

  1. Marchenko V.I., Alekseenko V.N., Dvoeglazov K.N. // Radiochemistry. 2015. Vol. 57. N 4. P. 366.
  2. Nazin E.R., Zachinyaev G.M., Belova E.V., Emel’yanov A.S., Myasoedov B.F. // Radiochemistry. 2019. Vol. 61. N 6. P. 671.
  3. Melent’ev A.B., Mashkin A.N., Tugarina O.V., Kolupaev D.N., Zilberman B.Ya., Tananaev I.G. // Radiochemistry. 2011. Vol. 53. N 3. P. 256.
  4. Марченко В.И., Двоеглазов К.Н. // Радиохимия. 2019. Т. 61. N 4. С. 320.
  5. Волк В.И., Двоеглазов К.Н., Алексеенко В.Н., Алексеенко С.Н., Кривицкий Ю.Г. Патент RU 2514947 C2. 2012.
  6. Егоров Г.Ф., Белова Е.В., Тхоржницкий Г.П., Смирнов А.В., Тананаев И.Г. // Вопр. радиац. безопасности. 2010. № 4. С. 22.
  7. Марченко В.И., Двоеглазов К.Н. // Радиохимия. 2020. Т. 62. № 3. С. 202.
  8. Tkac P., Precek M., Paulenova A. // Proc. Global 2009. Paris, France, Sept. 9, 2009. Paper 9122.
  9. Alekseenko V.N., Volk V.I., Marchenko V.I., Dvoeglazov K.N., Bychkov S.I., Bondin V.V. // Radiochemistry. 2012. Vol. 54. N 2. P. 149.
  10. Chung D.Y., Lee E.H. // J. Ind. Eng. Chem. 2006. Vol. 12. N 6. P. 962.
  11. Chung D.Y., Lee E.H. // J. Alloys Compd. 2008. Vol. 451. N 1–2. P. 440.
  12. Volk V.I., Marchenko V.I., Dvoeglazov K.N., Alekseenko V.N., Bychkov S.I., Pavlyukevich E.Yu. et al. // Radiochemistry. 2012. Vol. 54. N 2. P. 143.
  13. Zhang M., Hou X., Qiao J., Yang H. // 17th Radiochemical Conf. Mariánské Lázně, Czech Republic, May 11–16, 2014. P. 97.
  14. Zavalina O.A., Dvoeglazov K.N., Pavlyukevich E.Yu., Stepanov S.I. // Radiochemistry. 2017. Vol. 59. N 5. P. 453.
  15. Емельянов А.С., Родин А.В., Зачиняев Г.М. // Ядерн. и радиац. безопасность. 2021. Т. 100. № 2. С. 7.
  16. Nazin E.R., Zachinyaev G.M., Belova E.V., Emel’yanov A.S., Myasoedov B.F. // Radiochemistry. 2019. Vol. 61. N 6. P. 671.
  17. Nazin E.R., Belova E.V. // Prog. Nucl. Energy. 2022. Vol. 149. ID 104254.
  18. Назин Е.Р., Зачиняев Г.М. Пожаровзрывобезопасность технологических процессов радиохимических производств. М.: НТЦ ЯРБ, 2009. 195 c.
  19. Significant Incidents in Nuclear Fuel Cycle Facilities: IAEA-TECDOC-867. Vienna: IAEA, 1996.
  20. Usachev V.N., Markov G.S. // Radiochemistry. 2003. Vol. 45. N 1. P. 1.
  21. Obedkov A.S., Kalistratova V.V., Skvortsov I.V., Belova E.V. // Nucl. Eng. Technol. 2022. Vol. 54. N 9. P. 3580.
  22. Izato Y., Shiota K., Miyake A. // J. Phys. Chem. A. 2022. Vol. 126. N 19. P. 2998.
  23. Reed E.J., Rodriguez A.W., Manaa M.R., Fried L.E., Tarver C.M. // Phys. Rev. Lett. 2012. Vol. 109. N 3. ID 038301.
  24. Хмельницкий Л.И. Справочник по взрывчатым веществам. М.: Военная Артиллерийская инженерная акад. им. Ф.Э. Дзержинского, 1962. Ч. II.
  25. Kulyako Yu.M., Perevalov S.A., Trofimov T.I., Malikov D.A., Samsonov M.D., Vinokurov S.E. et al. // Radiochemistry. 2013. Vol. 55. N 6. P. 567.
  26. Obedkov A.S., Kalistratova V.V., Smirnov A.V., Belova E.V. // Prog. Nucl. Energy. 2024. Vol. 168. ID 105044.
  27. Gowland R., Stedman G. // J. Inorg. Nucl. Chem. 1981. Vol. 43. N 11. Р. 2859.
  28. Tkac P., Paulenova A., Gable K.P. // Appl. Spectrosc. 2007. Vol. 61. N 7. P. 772.
  29. Leshok D.Y., Alekseenko V.N., Gavrilov P.M., Alekseenko S.N., Dyachenko A.S., Samoilo A.A. et al. // Radiochim. Acta. 2015. Vol. 103. N 7. P. 477.
  30. Fischer N., Klapötke T.M., Stierstorfer J. // Propell. Explos. Pyrotech. 2011. Vol. 36. N 3. P. 225.
  31. Mohr E.B., Brezinski J.J., Audrieth L.F., Ritchey H.E., McFarlin R.F. // Inorg. Synth. 1953. Vol. 4. P. 32.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Additional materials
Жүктеу (564KB)
3. Fig. 1. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – GN, 2 – GN with UN

Жүктеу (90KB)
4. Fig. 2. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – AGC, 2 – AGC with UN

Жүктеу (67KB)
5. Fig. 3. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – AGC with GN, 2 – AGC with GN and UN

Жүктеу (66KB)
6. Fig. 4. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – KG, 2 – KG with UN

Жүктеу (118KB)
7. Fig. 5. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – KG with GN, 2 – KG with GN and UN

Жүктеу (103KB)

© Russian Academy of Sciences, 2025