Determination of conditions for the oxidation of UN and UC under microwave radiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The oxidation of UN and UC in a field of microwave radiation in air at atmospheric pressure has been studied. The influence of crucible material on the extent of oxidation of UN and UC was studied. It has been established that, under the influence of an MW field with a power of 800 W and a frequency of 2.45 GHz, under certain conditions, heating of UN and UC to ~993 K is observed with their oxidation in air to U3O8. For fast (15–20 min) and safe (without fires and explosions) oxidation of UN and UC, crucibles made of quartz and carbon ceramics are most suitable.

Texto integral

Acesso é fechado

Sobre autores

S. Kulyukhin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kulyukhin@ipc.rssi.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

Yu. Nevolin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

A. Bessonov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

Bibliografia

  1. Гюльмалиев Э.А., Третьяков В.Ф., Талышинский Р.М., Борисов В.П., Мовсумзаде Э.М. // История и педагогика естествознания. 2015. Т. 2. С. 59–68.
  2. Vanetsev A.S., Tretyakov Y.D. // Adv. Chem. 2007. Vol. 76. N 5. P. 435–453.
  3. Kharissova O.V., Kharisov B.I., Ruız Valdes J.J. // Ind. Eng. Chem. Res. 2010. Vol. 49. N 4. P. 1457–1466.
  4. Lu X., Chen Sh., Shu X., Hou Ch., Tan H. // Philosoph. Mag. Lett. 2018. Vol. 98. N 4. P. 155–160. https://doi.org/10.1080/09500839.2018.1511068
  5. Комаров В.И., Молохов М.Н., Сорокин А.А., Харитонов К.А., Балашов А.В., Борисов Г.Б. и др. // Атом. энергия. 2005. Т. 98. № 4. С. 288–293.
  6. Kulyako Yu.M., Trofimov T.I., Pilyushenko K.S., Vinokurov S.E., Myasoedov B.F. // Phys. At. Nuclei. 2020. Vol. 83. N 10. P. 1396–1399. https://doi.org/10.1134/S1063778820100105
  7. Dvoeglazov K., Kulyako Yu., Vinokurov S., Myasoedov B., Dmitriev M., Ushakov O. et al. // Energies. 2022. Vol. 15. N 18. P. 6618–6626. https://doi.org/10.3390/en15186618
  8. Singh G., Kumar P., Aher S., Purohit P., Khot P.M., Prakash A. et al. // J. Nucl. Mater. 2016. Vol. 479. P. 145–151. https://doi.org/10.1016/j.jnucmat.2016.06.053
  9. Kulyako Y.M., Trofimov T.I., Samsonov M.D., Vinokurov S.E., Myasoedov B.F. // Radiochemistry. 2015. Vol. 57. N 2. P. 127–130.
  10. Гаврилов П.М., Меркулов И.А., Друзь Д.В., Бондин В.В., Апальков Г.А., Смирнов С.И. и др. // Патент РФ 2654536. 2017.
  11. Hong S.-M., Jang H., Noh S., Kang H.W., Cho Y.-Z. // J. Radioanal. Nucl. Chem. 2021. Vol. 330. P. 695–705. https://doi.org/10.1007/s10967-021-07972-w
  12. Advances in Nuclear Fuel Chemistry / Ed. H.A. Markus. Duxford: Woodhead, 2020. 672 p.
  13. Momotov V.N., Makarov A.O., Volkov A.Yu., Lakeev P.V., Tikhonova D.E., Dvoeglazov K.N. // Radiochemistry. 2023. Vol. 65. N 2. P. 177–184. https://doi.org/10.1134/S1066362223020042
  14. Металиди М.М., Шаповалов С.В., Исмаилов Р.В., Скриплёв М.И., Безносюк В.И., Федоров Ю.С. // Радиохимия. 2015. Т. 57. № 1. С. 86–89.
  15. Аксютин П.В., Дьяченко А.С., Жабин А.Ю., Жерин И.И. // Изв. Томского политех. ун-та. Инжиниринг георесурсов. 2021. Т. 332. № 8. C. 18–27.
  16. Krivov M.P., Kireev G.A., Tenishev A.V., Davydov A.V., Skupov M.V., Solomatin I.D. et al. // J. Nucl. Mater. 2022. Vol. 567. Article 153798. https://doi.org/10.1016/j.jnucmat.2022.153798
  17. Кулюхин С.А., Неволин Ю.М., Гордеев А.В., Бессонов А.А. // Радиохимия. 2019. Т. 61. № 2. С. 108–116.
  18. Goncharov V.G., Liu J., van Veelen A., Kriegsman K., Benmore Ch., Sun Ch. et al. // J. Nucl. Mater. 2022. Vol. 569. Article 153904. https://doi.org/10.1016/j.jnucmat.2022.153904
  19. Sooby E.S., Brigham B.A., Robles G., White J.T., Paisner S.W., Kardoulaki E., Williams B. // J. Nucl. Mater. 2022. Vol. 560. Article 153487. https://doi.org/10.1016/j.jnucmat.2021.153487
  20. Кулюхин С.А., Гордеев А.В., Румер И.А., Кулемин В.В., Неволин Ю.М. // Атом. энергия. 2018. Т. 124. № 6. С. 344–349.
  21. Паспорт “Активный оксид алюминия шарик”. ТУ 2163-004-81279372-11. М.: SORBIS Group.
  22. Каримов О.Х., Даминев Р.Р., Касьянова Л.З., Каримов Э.Х. // Фундаментальные исследования. 2013. № 4-4. С. 801–805. URL: https://fundamental-research.ru/ru/article/view?id=31275 (дата обращения: 28.11.2024).
  23. JCPDS–Int. Centre for Diffraction Data. PDF 01-074-2101, α-U3O8.
  24. Куляко Ю.М., Трофимов Т.И., Винокуров С.Е., Самсонов М.Д., Мясоедов Б.Ф. // Вопр. радиац. безопасности. 2015. № 3. С. 13–22.
  25. Cao Z., Yoshikawa N., Taniguchi Sh. // Mater. Chem. Phys. 2010. Vol. 124. P. 900–903. https://doi.org/10.1016/j.matchemphys.2010.08.004

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Photograph of a quartz crucible containing UN under the influence of a MW field

Baixar (316KB)
3. Fig. 2. Powder X-ray diffraction patterns of samples obtained by oxidation of UN placed in porcelain (1), quartz (2) and carbon ceramic (3) crucibles. MWR irradiation conditions: air, 20 min, 800 W, 2.45 GHz. * U3O8 [23].

Baixar (112KB)
4. Fig. 3. Photograph of a porcelain crucible containing UC exposed to a MW field

Baixar (330KB)
5. Fig. 4. Powder X-ray diffraction patterns of samples obtained by oxidation of UС placed in crucibles made of alundum (1), porcelain (2), quartz (3) and carbon ceramics (4). MWR irradiation conditions: air, 20 min, 800 W, 2.45 GHz. * U3O8 [23].

Baixar (138KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025