HEAT CAPACITY AND THERMODYNAMIC PROPERTIES OF LA3TAO7

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

By relaxation, adiabatic and differential scanning calorimetry methods the molar heat capacity of lanthanum tantalate La3TaO7 of the structural type of weberite has been measured in the temperature range 0–1760 K and the thermodynamic properties have been calculated from the smoothed values of heat capacity: entropy and enthalpy increment, the Gibbs energy of lanthanum tantalate formation from binary oxides in the region of high temperatures was estimated and high stability of La3TaO7 was shown.

Sobre autores

P. Gagarin

Federal State Budgetary Institution of Science N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
119991, Moscow, Russia

A. Guskov

Federal State Budgetary Institution of Science N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

119991, Moscow, Russia

V. Guskov

Federal State Budgetary Institution of Science N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

119991, Moscow, Russia

A. Tyurin

Federal State Budgetary Institution of Science N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

119991, Moscow, Russia

K. Gavrichev

Federal State Budgetary Institution of Science N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

119991, Moscow, Russia

Bibliografia

  1. Kumar V., Balasubramanian K. // Prog. Org. Coat. 2016. V. 90. P. 54. https://doi.org/10.1016/j.porgcoat.2015.09.019
  2. Hardwicke C.U., Lau Y.C. // J. Therm. Spray. Technol. 2013. V. 22. P. 564. https://doi.org/10.1007/s11666-013-9904-0
  3. Wang L., Wang Y., Sun X.G., et al. // Ceram. Inter. 2012. V. 38. P. 3595. https://doi.org/10.1016/j.ceramint.2011.12.076
  4. Mohan P., Yuan B., Patterson T., et al. // J. Am. Ceram. Soc. 2007. V. 90. P. 3601. https://doi.org/10.1111/j.1551-2916.2007.01941.x
  5. Fergus J.W. // Metall. Mater. Trans. 2014. V. 6. P. 118. https://doi.org/10.1007/s40553-014-0012-y
  6. Angle J.P., Steppan J.J., Thompson P.M. // J. Eur. Ceram. Soc. 2014. V. 34. P. 4327. https://doi.org/10.1016/j.jeurceramsoc.2014.06.020
  7. Limarga A.M., Shian S., Leckie R.M. // J. Eur. Ceram. Soc. 2014. V. 34. P. 3085. https://doi.org/10.1016/j.jeurceramsoc.2014.03.013
  8. Wang L., Wang Y., Sun X.G. // Mater. Des. 2012. V. 35. P. 505. https://doi.org/10.1016/j.matdes.2011.09.031
  9. Padture N.P. // Science 2002. V. 296. № 5566. P. 280. https://doi.org/10.1126/science.1068609
  10. Arseniev P.A., Glushkova V.B., Evdokimov A.A., et al. Compounds of rare-earth elements. Zirconates, Hafnates, Niobates, Tantalates, Antimonates. Nauka, Moscow, 1985. 261 p. [Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 c.]
  11. Сиротинкин В.П., Евдокимов А.А., Трунов В.К. // ЖНХ. 1982. Т. 27. № 7. С. 1648–1651. [Sirotinkin V.P., Evdokimov A.A., Trunov V.K. // Russ. J. Inorg. Chem. 1982. V. 27. № 7. P. 1648]
  12. Haoming Z., Yan F., Xiaoge C. et al. // Ceram. Int. 2017. V. 43. № 1. P. 755. https://doi.org/10.1016/j.ceramint.2016.10.005
  13. Subramani T., Navrotsky A. // Inorg. Chem. 2019. V. 58. P. 16126. https://doi.org/10.1021/acs.inorgchem.9b02675.
  14. Tyurin A.V., Khoroshilov A.V., Guskov V.N., et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1599. 10.1134/S0036023618120215' target='_blank'>https://doi: 10.1134/S0036023618120215 [Тюрин А.В., Хорошилов А.В., Гуськов В.Н., и др. // ЖНХ. 2018. Т. 63. С. 1583–1588. https://doi.org/10.1134/S0044457X18120218]
  15. Ryumin M.A., Nikoforova G.E., Tyurin A.V. et al. // Inorg. Mater. 2020. V. 56. P. 102. 10.1134/S00201685200101148' target='_blank'>https://doi: 10.1134/S00201685200101148 [Рюмин М.А., Никифорова Г.Е., Тюрин А.В., и др. // Неорган. материалы. 2020. Т. 56. С. 97–104.]
  16. https://www.qdusa.com/products/ppms.html
  17. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. № 5. P. 573. https://doi.org/10.1515/pac-2019-0603]
  18. Konings R.J.M., Beneš O., Kovács A., et al. // JPCRD. 2014. V. 43. № 1. https://doi.org/10.1063/1.4825256
  19. Jacob K.T., Shekhar C., Waseda Y. // J. Chem. Thermodynamics. 2009. V. 41. P. 748. https://doi.org/10.1016/j.jct.2008.12.006
  20. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  21. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  22. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  23. Глушко В.П. Термические константы веществ. Справочник. М., 1965–1982. [Glushko V.P. Thermal constants of substances. Reference book. Moscow, 1965–1982]
  24. Barin I., Platzki G. Thermochemical Data of Pure Substances. 3rd Edition. Weinheim: VCh, 2003. P. 1117.
  25. Forbes T.Z., Nyman M., Rodriguez M.A., et al. // J. Solid State Chem. 2010. V. 183 P. 2516. https://doi.org/10.1016/j.jssc.2010.08.024.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025