Влияние высоких доз мемантина на поведение мышей, различающихся по относительному весу мозга
- Авторы: Огиенко Н.А.1, Ревищин А.В.2, Павлова Г.В.2, Перепелкина О.В.1, Полетаева И.И.1
-
Учреждения:
- Кафедра высшей нервной деятельности, Биологический факультет МГУ им. М. В. Ломоносова
- Институт высшей нервной деятельности и нейрофизиологии РАН
- Выпуск: Том 75, № 5 (2025)
- Страницы: 636-646
- Раздел: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://consilium.orscience.ru/0044-4677/article/view/692571
- DOI: https://doi.org/10.31857/S0044467725050011
- ID: 692571
Цитировать
Полный текст



Аннотация
На мышах двух линий, различающихся по относительному весу мозга (большой мозг и малый мозг, далее БМ и ММ), продемонстрированы сложные эффекты семидневного внутрибрюшинного введения мемантина (антагониста NMDA-рецепторов, доза 50 мг/кг). Мемантин усилил исследовательское поведение у мышей линии БМ (но не ММ) и их реакцию на новизну. У мышей ММ контрольной группы после введения физиологического раствора выполнение теста было более успешным, чем у такой же группы мышей БМ. Мемантин дифференциально влиял на успешность выполнения когнитивного теста на “неисчезаемость” у мышей БМ и ММ – поддерживал выполнение теста у мышей ММ на стабильно устойчивом уровне, тогда как у мышей БМ наблюдалось резкое снижение успешности выполнения наиболее “трудных” предъявлений теста. В субгранулярной зоне зубчатой извилины гиппокампа после введения мемантина у мышей БМ (но не ММ) было значимо больше новых нейральных клеточных элементов по сравнению с контролем. В использованной выборке интактных мышей БМ и ММ в исследованном поколении статистически значимых межлинейных различий в выполнении когнитивного теста обнаружено не было. Поскольку введение мемантина их выявило, это может быть свидетельством генотип-зависимых различий в поведении мышей БМ и ММ.
Об авторах
Н. А. Огиенко
Кафедра высшей нервной деятельности, Биологический факультет МГУ им. М. В. Ломоносова
Email: ingapoletaeva@mail.ru
Москва, Россия
А. В. Ревищин
Институт высшей нервной деятельности и нейрофизиологии РАН
Email: ingapoletaeva@mail.ru
Москва, Россия
Г. В. Павлова
Институт высшей нервной деятельности и нейрофизиологии РАН
Email: ingapoletaeva@mail.ru
Москва, Россия
О. В. Перепелкина
Кафедра высшей нервной деятельности, Биологический факультет МГУ им. М. В. Ломоносова
Автор, ответственный за переписку.
Email: ingapoletaeva@mail.ru
Москва, Россия
И. И. Полетаева
Кафедра высшей нервной деятельности, Биологический факультет МГУ им. М. В. Ломоносова
Email: ingapoletaeva@mail.ru
Москва, Россия
Список литературы
- Перепелкина О.В., Тарасова А.Ю., Огиенко Н.А., Лильп И.Г., Полетаева И.И. Вес мозга и когнитивные способности лабораторной мыши. Усп. совр. биол. 2019. 139 (5): 434–445.
- Перепелкина О.В., Полетаева И.И., Поварнина П.Ю., Гудашева Т.А. Влияние низкомолекулярного миметика NGF дипептида ГК-2 на поведение мышей аутбредных линий, различающихся по весу мозга. Усп. совр. биол., 2024. 144 (4): 461–471.
- Chen Y-C., Holmes A. Effects of topiramate and other anti-glutamatergic drugs on the acute intoxicating actions of ethanol in mice: modulation by genetic strain and stress. Neuropsychopharm. 2009. 34 (6): 1454–1466. https://doi.org/10.1038/npp.2008.182
- Egunlusi A.O., Joubert J. NMDA Receptor Antagonists: Emerging Insights into Molecular Mechanisms and Clinical Applications in Neurological Disorders. Pharmaceuticals. 2024. 17 (5): 639. https://doi.org/10.3390/ph17050639
- Galsworthy M.J., Jose L. Paya-Cano J.L., Lin Liu L., Monleón S., Gregoryan G. et al. Cognitive Ability in a Battery of Cognitive Tasks for Laboratory Mice. Behavior Genetics, 2005. 35: 675–692.
- Ishikawa R., Kim R., Namba T., Kohsaka S., Uchino S., Kida S. Time-dependent enhancement of hippocampus-dependent memory after treatment with memantine: implications for enhanced hippocampal adult neurogenesis. Hippocampus. 2014. 24: 784–793.
- Kuns B., Rosani A., Patel P., Varghese D. Memantine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025.
- Lau A., Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv: Eur. J. Physiol. 2010, 460: 525–542. https://doi.org/10.1007/s00424-010-0809-1
- Lipton S.A.J. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. Alzheimers Dis. 2004. 6 (6 Suppl): S61–74. https://doi.org/10.3233/jad-2004-6s610
- Marvanová M., Lakso M., Pirhonen J., Nawa H., Wong G., Castrén E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell Neurosci. 2001. 18 (3): 247–258.
- Мaeda S., Yamada J., Iinuma K.M., Nadanaka S., Kitagawa H., Jinno S. Chondroitin sulfate proteoglycan is a potential target of memantine to improve cognitive function via the promotion of adult neurogenesis. Br.J. Pharmacol. 2022. 179 (20): 4857–4877. https://doi.org/10.1111/bph.15920
- Maekawa M., Namba T., Suzuki E., Yuasa S., Kohsaka S., Uchino S. NMDA receptor antagonist memantine promotes cell proliferation and production of mature granule neurons in the adult hippocampus. Neurosci Res. 2009. 63 (4): 259–266.
- Matsumura M., Sato K., Kubota T., Kishimoto Y. Spatial and latent memory data in PS2Tg2576 Alzheimer’s disease mouse model after memantine treatment. Data Brief. 2021. 12. 36: 107131. https://doi.org/10.1016/j.dib.2021.107131
- Minkeviciene R., Banerjee P., Tanila H. Cognition-enhancing and anxiolytic effects of memantine. Neuropharmacology. 2008. 54 (7): 1079–1085. https://doi.org/10.1016/j.neuropharm.2008.02.014
- More L., Gravius A., Nagel J., Valastro B., Greco S., Danysz W. Therapeutically relevant plasma concentrations of memantine produce significant NMDA receptor occupancy and do not impair learning in rats. Behav. Pharmacol. 2008. 19: 724–734.
- Neale J.H., Olszewski R. A role for N-acetylaspartylglutamate (NAAG) and mGluR3 in cognition. Neurobiol Learn Mem. 2019. 158: 9–13. https://doi.org/10.1016/j.nlm.2019.01.006
- Onogi H., Ishigaki S., Nakagawasai O., Arai-KatoY., Arai Y., Watanabe H. et al. Influence of memantine on brain monoaminergic neurotransmission parameters in mice: neurochemical and behavioral study. Biol Pharm Bull. 2009. 32 (5): 850–855. https://doi.org/10.1248/bpb.32.850
- Parsons C.G., Stoffler A., Danysz W. Memantine: a NMDA receptor worse antagonist that improves memory by restoration of homeostasis in the glutamatergic system – too little activation is bad, too much is even worse. Neuropharmacology. 2007. 53: 699e723.
- Pepeu G., Blandina P.J. The acetylcholine, GABA, glutamate triangle in the rat forebrain. Physiol Paris. 1998. 92 (5–6): 351–355. https://doi.org/10.1016/S0928-4257(99)80004-7
- Perepelkina O.V., Poletaeva I.I. Cognitive test solution in mice with different brainweights after atomoxetine. Neurol.Intern. 2023. 15 (2): 649–660.
- Petrović M., Horák M., Sedlácek M., Vyklický L. Jr. Physiology and pathology of NMDA receptors. Prague Med Rep. 2005. 106 (2): 113–136.
- Réus G.Z., Valvassori S.S., Machado R.A., Martins M.R., Gavioli E.C., Quevedo J. Acute treatment with low doses of memantine does not impair aversive, non-associative and recognition memory in rats. Naunyn Schmiedebergs Arch Pharmacol. 2008. 376 (5): 295–300. https://doi.org/10.1007/s00210-007-0235-x
- Saeedi M., Mehranfar F. Challenges and approaches of drugs such as memantine, donepezil, rivastigmine, and aducanumab in the treatment, control and management of Alzheimer’s disease. Recent Pat. Biotechnol. 2022. 16 (2): 102–121. https://doi.org/10.2174/1872208316666220302115901
- Stazi M., Wirths O. Chronic memantine treatment ameliorates behavioral deficits, neuron loss, and impaired neurogenesis in a model of Alzheimer’s disease. Mol. Neurobiol. 2021. 58 (1): 204–216. https://doi.org/10.1007/s12035-020-02120-z
- Tari P.K., Parsons C.G., Collingridge G.L., Rammes G. Memantine: Updating a rare success story in pro-cognitive therapeutics. Neuropharmacol. 2024. 244: 109737. https://doi.org/10.1016/j.neuropharm.2023.109737
- Wesierska M.J., Duda W., Dockery C.A. Low-dose memantine-induced working memory improvement in the allothetic place avoidance alternation task (APAAT) in young adult male rats. Front. Behav. Neurosci. 2013. 7: 203.
- Wise L.E., Lichtman A.H. The uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine prolongs spatial memory in a rat delayed radial-arm maze memory task. Eur. J. Pharmacol. 2007. 575: 98–102.
- Wu H.M., Tzeng N.S., Qian L., Wei S.J., Hu X., Chen S.H. et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharm. 2009. 34 (10): 2344–2357.
- Yu S.P., Jiang M.Q., Shim S.S., Pourkhodadad S., Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer’s disease. Mol. Neurodegener. 2023. 18 (1): 43. https://doi.org/10.1186/s13024-023-00636-1
- Zheng X., Li W., Xiang Q., Wang Y., Qu T., Fang W., Yang H. Memantine attenuates cognitive and emotional dysfunction in mice with sepsis-associated encephalopathy. ACS Omega. 2023. 8 (43): 40934–40943. https://doi.org/10.1021/acsomega.3c06250
Дополнительные файлы
