Determination of cavity shape and size in homogeneously magnetized magnets within the framework of a two-dimensional model
- 作者: Dyakin V.V.1, Kudryashova O.V.1, Raevskii V.Y.1
-
隶属关系:
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- 期: 编号 7 (2025)
- 页面: 43-58
- 栏目: Electromagnetic methods
- URL: https://consilium.orscience.ru/0130-3082/article/view/688875
- DOI: https://doi.org/10.31857/S0130308225070059
- ID: 688875
如何引用文章
详细
For extended uniformly magnetized bodies, a practical implementation of a numerical algorithm for solving an integral-differential equation on a function that defines the localization, shape, and size of a cavity in such a magnet based on the measured resulting field outside of it has been investigated. A program in the FORTRAN language that implements the above algorithm has been compiled. As a test and illustrative example of the studied algorithm for a uniformly magnetized cylindrical magnet, the shape, dimensions, and position of a non-coaxial cylindrical cavity in the magnet have been reconstructed.
全文:

作者简介
V. Dyakin
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: kudryashova_ov@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, S. Kovalevskoy St., 18
O. Kudryashova
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: kudryashova_ov@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, S. Kovalevskoy St., 18
V. Raevskii
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: raevskii@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, S. Kovalevskoy St., 18
参考
- Pechenkov A N., Shcherbinin V.E. Nekotorye pryamye i obratnye zadachi tekhnicheskoj magnitostatiki. Ekaterinburg: Izd-vo UrO RAN, 2004. 177 p.
- Pechenkov A.N., Shcherbinin V.E. O reshenii obratnoj zadachi magnitostaticheskoj tomografii // Defectoskopiya. 2009. No. 3. P. 37—55.
- Pechenkov A.N., Shcherbinin V.E. K voprosu o needinstvennosti resheniya obratnoj zadachi magnitostaticheskoj defektoskopii // Kontrol’. Diagnostika. 2006. No. 9. P. 59—60.
- Pechenkov A.N. O vliyanii formy tela na edinstvennost’ resheniya obratnoj zadachi magnitostaticheskoj defektoskopii // Defectoskopiya. 2006. No. 10. P. 24—26.
- Dyakin V.V. Pryamaya i obratnaya zadacha magnitostatiki // Defectoskopiya. 1996. No. 3. P. 3—6.
- Dyakin V.V., Kudryashova O.V., Raevskij V.Ya. K voprosu o korrektnosti pryamoj i obratnoj zadachi magnitostatiki. Chast’ 2 // Defectoskopiya. 2018. No. 10. P. 15—24.
- Reutov Yu.Ya., Gobov Yu.L., Loskutov V.E. O vozmozhnostyah ispol’zovaniya programmy ELCUT v raschetah po defektoskopii // Defectoskopiya. 2002. No. 6. P. 34—40.
- Zagidulin R.V, Dyakin V.V., Dudarev M.S., Shcherbinin V.E. K opredeleniyu geometricheskih razmerov poverhnostnogo defekta / Fizicheskie metody i pribory NK. Tezisy dokladov X Ural’skoj nauchnoj tekhnicheskoj konferencii. Izhevsk, 1989. P. 83.
- Novoslugina A.P., Smorodinskij Ya.G. Raschetnyj sposob ocenki parametrov defektov v stalyah // Defectoskopiya. 2017. No. 11. P. 13—19.
- Dyakin V.V., Raevskij V.Ya., Kudryashova O.V. Pole konechnogo defekta v plastine // Defectoskopiya. 2009. No. 3. P. 67—79.
- Krotov L.N. Rekonstrukciya granicy razdela sred po prostranstvennomu raspredeleniyu magnitnogo polya rasseyaniya. 1. Issledovanie svojstv resheniya vspomogatel’noj pryamoj zadachi // Defectoskopiya. 2004. No. 2. P. 76—82.
- Krotov L.N. Rekonstrukciya granicy razdela sred po prostranstvennomu raspredeleniyu magnitnogo polya rasseyaniya. 2. Postanovka i metod resheniya obratnoj geometricheskoj zadachi magnitostatiki // Defectoskopiya. 2004. No. 6. P. 76—82.
- Slesarev D.A., Barat V.A., Chobanu P.M. Snizhenie pogreshnosti statisticheskogo metoda ocenki parametrov defektov v magnitnoj defektoskopii // Defectoskopiya. 2012. No. 1. P. 69—74.
- Gobov Yu.L., Nikitin A.V., Popov S.E. Reshenie obratnoj geometricheskoj zadachi magnitostatiki dlya defektov korrozii // Defectoskopiya. 2018. No. 10. P. 51—57.
- Dyakin V.V., Kudryashova O.V., Raevskij V.Ya. Obratnaya zadacha magnitostatiki v polyah nasyshcheniya // Defectoskopiya. 2019. No. 10. P. 35—44.
- Dyakin V.V., Kudryashova O.V., Raevskij V.Ya. Obratnaya zadacha magnitostatiki dlya odnorodno namagnichennyh tel v ramkah dvumernoj modeli // Defectoskopiya. 2025. No. 2. P. 39—52.
- Samohin A.B. Ob”emnye singulyarnye integral’nye uravneniya elektrodinamiki. M.: Tekhnosfera, 2021. 217 p.
- Hizhnyak N.A. Integral’nye uravneniya makroskopicheskoj elektrodinamiki. Kiev: Naukova dumka, 1986. 279 s.
- Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 1 // SIAM J. Appl. Math. 1980. V. 39. No. 1. P. 14—20.
- Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 2 // SIAM J. Numer. Anal. 1981. V. 18. No. 4. P. 644—653.
- Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 3 // SIAM J. Math. Analys. 1981. V. 12. No. 4. P. 536—540.
- Dyakin V.V. Matematicheskie osnovy klassicheskoj magnitostatiki. Ekaterinburg: RIO UrO RAN, 2016. 403 p.
- Raevskij V.Ya. O svojstvah kvaziermitovyh operatorov i ih primenenii k issledovaniyu operatorov teorii potenciala i osnovnogo uravneniya elektro- i magnitostatiki / Preprint № 24/48(01). Ekaterinburg: IFM UrO RAN, 2001.
- Raevskij V.Ya. Nekotorye svojstva operatorov teorii potenciala i ih primenenie k issledovaniyu osnovnogo uravneniya elektro- i magnitostatiki // Teoreticheskaya i matematicheskaya fizika. 1994. V. 3. No. 100. P. 323—331.
- Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady. T. 1. M.: Fizmatlit, 2003. 632 p.
- Panteleev A.V., Letova T.A. Metody optimizacii v primerah i zadachah. M.: Vyssh. shk., 2002. 544 p.
补充文件
