Химиотерапевтические борсодержащие гомоцистеинамиды человеческого сывороточного альбумина
- Авторы: Ван M.1, Цыремпилов С.А.1, Москалев И.А.1, Захарова О.Д.2, Касатова А.И.3, Сильников В.Н.2, Годовикова Т.С.1,2, Попова Т.В.1,2
-
Учреждения:
- Новосибирский государственный университет
- Институт химической биологии и фундаментальной медицины СО РАН
- Институт ядерной физики СО РАН
- Выпуск: Том 51, № 1 (2025)
- Страницы: 119-136
- Раздел: Статьи
- URL: https://consilium.orscience.ru/0132-3423/article/view/683102
- DOI: https://doi.org/10.31857/S0132342325010113
- EDN: https://elibrary.ru/LYTSFQ
- ID: 683102
Цитировать
Аннотация
Сочетание бор-нейтронозахватной терапии и химиотерапии может обеспечить высокую эффективность лечения раковых опухолей. Создание терапевтических конструкций, совмещающих в себе две эти функции –возможность визуализации in vitro и in vivo и удобную платформу селективной доставки в опухоль, – крайне актуально на сегодняшний день. В данном исследовании мы сосредоточились на сывороточном альбумине человека, хорошо известной платформе доставки лекарств, и разработали на его основе конструкции, функционализированные кластерами бора, аналогами химиотерапевтической молекулы – гемцитабина и сигнальными молекулами. Для создания конструкций нами были разработаны новые аналоги тиолактона гомоцистеина, содержащие клозо-додекаборат, или бис(дикарболлид) кобальта, и аналог гемцитабина, содержащий клозо-додекаборат, присоединенный к С5-атому углерода азотистого основания. Продемонстрировано, что добавление в структуру конъюгатов гемцитабиновых аналогов повышает их цитотоксичность в отношении клеточных линий глиобластомы человека. Среди итоговых конъюгатов наибольшей цитотоксичностью обладает конструкция, имеющая в своем составе бис(дикарболлид) кобальта. Итоговые конструкции хорошо накапливаются в цитоплазме раковых клеток. Конъюгат альбумина, имеющий в своем составе бис(дикарболлид) кобальта и борсодержащий аналог гемцитабина, способен накапливаться в ядрах клеток линии T98G. Таким образом, в экспериментах in vitro обе итоговые конструкции на основе альбумина показали достаточную эффективность в отношении линии клеток глиомы человека. Мы ожидаем, что сконструированные нами терапевтические конъюгаты значительно увеличат цитотоксичность в отношении раковых клеток при облучении эпитепловыми нейтронами. Совмещение в составе одной конструкции химиотерапевтического остатка и борсодержащей группы дает в перспективе возможность для проведения более эффективной терапии глиом.
Полный текст

Об авторах
M. Ван
Новосибирский государственный университет
Автор, ответственный за переписку.
Email: io197724@gmail.com
Россия, Новосибирск
С. А. Цыремпилов
Новосибирский государственный университет
Email: io197724@gmail.com
Россия, Новосибирск
И. А. Москалев
Новосибирский государственный университет
Email: io197724@gmail.com
Россия, Новосибирск
О. Д. Захарова
Институт химической биологии и фундаментальной медицины СО РАН
Email: io197724@gmail.com
Россия, Новосибирск
А. И. Касатова
Институт ядерной физики СО РАН
Email: io197724@gmail.com
Россия, Новосибирск
В. Н. Сильников
Институт химической биологии и фундаментальной медицины СО РАН
Email: io197724@gmail.com
Россия, Новосибирск
Т. С. Годовикова
Новосибирский государственный университет; Институт химической биологии и фундаментальной медицины СО РАН
Email: io197724@gmail.com
Россия, Новосибирск; Новосибирск
Т. В. Попова
Новосибирский государственный университет; Институт химической биологии и фундаментальной медицины СО РАН
Email: io197724@gmail.com
Россия, Новосибирск; Новосибирск
Список литературы
- Sathornsumetee S., Reardon D.A., Desjardins A., Quinn J.A., Vredenburgh J.J., Rich J.N. // Cancer. 2007. V. 110. P. 13–24. https://doi.org/10.1002/cncr.22741
- Chen R., Smith-Cohn M., Cohen A.L., Colman H. // Neurotherapeutics. 2017. V. 14. P. 284–297. https://doi.org/10.1007/s13311-017-0519-x
- Sweety A., Abhishek C., Sandhya Y., Godhanjali C., Atharva K., Ankesh K. J., Jayant S. G., Rahul P. // Int. Rev. Immunol. 2022. V. 41. P. 582–605. https://doi.org/10.1080/08830185.2022.2101647
- Lan G., Song Q., Luan Y., Cheng Y. // Int. J. Pharm. 2024. V. 650. P. 123747. https://doi.org/10.1016/j.ijpharm.2023.123747
- Lansangan C., Khoobchandani M., Jain R., Rudensky S., Perry C.C., Patil R. // Materials (Basel). 2024. V. 17. P. 1153. https://doi.org/10.3390/ma17051153
- Yu X., Zhu W., Di Y., Gu J., Guo Z., Li H., Fu D., Jin C. // Int. J. Nanomedicine. 2017. V. 12. P. 6771–6785. https://doi.org/10.2147/ijn.s131295
- Guo Z., Wang F., Di Y., Yao L., Yu X., Fu D., Li J., Jin C. // Int. J. Nanomedicine. 2018. V. 13. P. 4869– 4880. https://doi.org/10.2147/ijn.s166769
- Matsushita K., Okuda T., Mori S., Konno, M., Eguchi H., Asai A., Koseki J., Iwagami Y., Yamada D., Akita H., Asaoka T., Noda T., Kawamoto K., Gotoh K., Kobayashi S., Kasahara Y., Morihiro K., Satoh T., Doki Y., Mori M., Ishii H., Obika S.A. // ChemMedChem. 2019. V. 14. P. 1384–1391. https://doi.org/10.1002/cmdc.201900324
- Xu Y., Huang Y., Lu W., Liu S., Xiao Y., Yu J. // Eur. J. Pharm. Biopharm. 2019. V. 144. P. 193–206. https://doi.org/10.1016/j.ejpb.2019.09.019
- Samaniego L.C., Martínez J.H., Acebedo S.L., Spagnuolo C.C. // Bioorg. Chem. 2019. V. 90. P. 103059. https://doi.org/10.1016/j.bioorg.2019.103059
- Evens A.M., Rosen S.T., Helenowski I., Kline J., Larsen A., Colvin J., Winter J.N., van Besien K.M., Gordon L.I., Smith S.M. // Br. J. Haematol. 2013. V. 163. P. 55–61. https://doi.org/10.1111/bjh.12488
- Pandit B., Royzen M. // Genes (Basel). 2022. V. 13. P. 466. https://doi.org/10.3390/genes13030466
- Paroha S., Verma J., Dubey R.D., Dewangan R.P., Molugulu N., Bapat R.A., Sahoo P.K., Kesharwani P. // Int. J. Pharm. 2021. V. 592. P. 120043. https://doi.org/10.1016/j.ijpharm.2020.120043
- Elzoghby A.O., Samy W.M., Elgindy S.N. // J. Control. Release. 2012. V. 157. P. 168–182. https://doi.org/10.1016/j.jconrel.2011.07.031
- Cho H., Jeon S.I., Ahn C-H., Shim M.K., Kim K. // Pharmaceutics. 2022. V. 14. P. 728. https://doi.org/10.3390/pharmaceutics14040728
- Li C., Zhang D., Pan Y., Chen B. // Polymers. (Basel). 2023. V. 15. P. 3354. https://doi.org/10.3390/polym15163354
- Tao H.Y., Wang R.Q., Sheng W.J., Zhen Y.S. // Int. J. Biol. Macromol. 2021. V. 187. P. 24–34. https://doi.org/10.1016/j.ijbiomac.2021.07.080
- Yu X., Ruan M., Wang Y., Nguyen A., Xiao W., Ajena Y., Solano L.N., Liu R., Lam K.S. // Bioconjug. Chem. 2022. V. 33. P. 2332–2340. https://doi.org/10.1021/acs.bioconjchem.2c00361
- Ma T., Jiang J.L., Qi W.X., Chen J.Y., Xu H.P. // Drug. Des. Devel. Ther. 2022. V. 16. P. 2395–2406. https://doi.org/10.2147/dddt.s366558
- Kong L., Du J., Gu J., Deng J., Guo Y., Tao B., Jin C., Fu D., Li J. // Front. Surg. 2022. V. 9. P. 890412. https://doi.org/10.3389/fsurg.2022.890412
- Wang X., Liang Y., Fei S., He H., Zhang Y., Yin T., Tang X. // AAPS PharmSciTech. 2018. V. 19. P. 812– 819. https://doi.org/10.1208/s12249-017-0888-9
- Norouzi P., Amini M., Mottaghitalab F., Mirzazadeh Tekie F.S., Dinarvand R., Mirzaie Z.H., Atyabi F. // Chem. Biol. Drug. Des. 2020. V. 96. P. 745–757. https://doi.org/10.1111/cbdd.13044
- Han H., Wang J., Chen T., Yin L., Jin Q., Ji J. // J. Colloid. Interface Sci. 2017. V. 507. P. 217–224. https://doi.org/10.1016/j.jcis.2017.07.047
- Raskolupova V.I., Wang M., Dymova M.A., Petrov G.O., Shchudlo I.M., Taskaev S.Y., Abramova T.V., Godovikova T.S., Silnikov V.N., Popova T.V. // Molecules. 2023. V. 28. P. 2672. https://doi.org/10.3390/molecules28062672
- Rak J., Kaplánek R., Král V. // Bioorg. Med. Chem. Lett. 2010. V. 20. P. 1045–1048. https://doi.org/10.1016/j.bmcl.2009.12.038
- Rak J., Jakubek M., Kaplánek R., Matějíček P., Král V. // Eur. J. Med. Chem. 2011. V. 46. P. 1140–1146. https://doi.org/10.1016/j.ejmech.2011.01.032
- Goszczyński T.M., Fink K., Kowalski K., Leśnikowski Z.J., Boratyński J. // Sci. Rep. 2017. V. 7. P. 9800. https://doi.org/10.1038/s41598-017-10314-0
- Kikuchi S., Kanoh D., Sato S., Sakurai Y., Suzuki M., Nakamura H. // J. Control. Release. 2016. V. 237. P. 160–167. https://doi.org/10.1016/j.jconrel.2016.07.017
- Ishii S., Sato S., Asami H., Hasegawa T., Kohno J., Nakamura H. // Org. Biomol. Chem. 2019. V. 17. P. 5496–5499. https://doi.org/10.1039/c9ob00584f
- Nakamura H., Kikuchi S., Kaway K., Ishii S., Sato S. // Pure Appl. Chem. 2018. V. 90. P. 745–753. https://doi.org/10.1515/pac-2017-1104
- Sato S., Ishii H., Nakamura H. // Eur. J. Inorg. Chem. 2017. V. 2017. P. 4345. https://doi.org/10.1002/ejic.201701118
- Popova T.V., Dymova M.A., Koroleva L.S., Zakharova O.D., Lisitskiy V.A., Raskolupova V.I., Sycheva T.V., Taskaev S.Yu., Silnikov V.N., Godovikova T.S. // Molecules. 2021. V. 26. P. 6537. https://doi.org/10.3390/molecules26216537
- Wang M., Moskalev I.A., Zakharova O.D., Kasatova A.I., Silnikov V.N., Popova T.V., Godovikova T.S. // J. Biol. Today’s World. 2024. V. 13. P. 001–007. https://doi.org/10.35248/2322-3308-13.1.001
- Lisitskiy V.A., Khan H., Popova T.V., Chubarov A.S., Zakharova O.D., Akulov A.E., Shevelev O.B., Zavjalov E.L., Kop-tyug I.V., Moshkin M.P., Silnikov V.N., Ahmad S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 3925–3930. https://doi.org/10.1016/j.bmcl.2017.05.084
- Raskolupova V.I., Popova T.V., Zakharova O.D., Nikotina A.E., Abramova T.V., Silnikov V.N. // Molecules. 2021. V. 26. P. 2679. https://doi.org/10.3390/molecules26092679
- Popova T.V., Pyshnaya I.A., Zakharova O.D., Akulov A.E., Shevelev O.B., Poletaeva J., Zavjalov E.L., Silnikov V.N., Ryabchikova E.I., Godovikova T.S. // Biomedicines. 2021. V. 9. P. 74. https://doi.org/10.3390/biomedicines9010074
- Popova T.V., Krumkacheva O.A., Burmakova A.S., Spitsyna A.S., Zakharova O.D., Lisitskiy V.A., Kirilyuk I.A., Silnikov V.N., Bowman M.K., Bagryanskaya E.G., Godovikova T.S. // RSC Med. Chem. 2020. V. 11. P. 1314–1325. https://doi.org/10.1039/c9md00516a
- Popova T.V., Khan H., Chubarov A.S., Lisitskiy V.A., Antonova N.M., Akulov A.E., Shevelev, O.B., Zavjalov, E.L., Silnikov, V.N., Ahmad, S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2018. V. 28. P. 260–264. https://doi.org/10.1016/j.bmcl.2017.12.061
- Chubarov A.S., Zakharova O.D., Koval O.A., Romaschenko A.V., Akulov A.E., Zavjalov E.L., Razumov I.A., Koptyug I.V., Knorre D.G., Godovikova T.S.// Bioorg. Med. Chem. 2015. V. 23. 6943–6954. https://doi.org/10.1016/j.bmc.2015.09.043
- Miyamura S., Imafuku T., Anraku M., Taguchi K., Yamasaki K., Tominaga Y., Maeda H., Ishima Y., Watanabe H., Otagiri M., Maruyama T. // J. Pharm. Sci. 2016. V. 105. P. 1043–1049. https://doi.org/10.1016/j.xphs.2015.12.015
- Ma Q., Long W., Xing C., Chu J., Luo M., Wang H.Y., Liu Q., Wang R.F. // Front. Immunol. 2018. V. 9. P. 2924. https://doi.org/10.3389/fimmu.2018.02924
- Hu H., Ng T.S.C., Kang M., Scott E., Li R., Quintana J.M., Matvey D., Vantaku V.R., Weissleder R., Parangi S., Miller M.A. // Clin. Cancer. Res. 2023. V. 29. P. 3457–3470. https://doi.org/10.1158/1078-0432.ccr-22-2976
- Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. // J. Control. Release. 2000. V. 65. P. 271–284. https://doi.org/10.1016/s0168-3659(99)00248-5
- Park C.R., Jo J.H., Song M.G., Park J.Y., Kim Y.H., Youn H., Paek S.H., Chung J.K., Jeong J.M., Lee Y.S., Kang K.W. // Theranostics. 2019. V. 9. P. 7447–7457. https://doi.org/10.7150/thno.34883
- Zhao P., Wang Y., Wu A., Rao Y., Huang Y. // ChemBioChem. 2018. V. 19. P. 1796–1805. https://doi.org/10.1002/cbic.201800201
- Cui T., Corrales-Guerrero S., Castro-Aceituno V., Nair S., Maneval D.C., Monnig C., Kearney P., Ellis S., Raheja N., Raheja N., Williams T.M. // Mol. Ther. Oncolytics. 2023. V. 18. P. 181–192. https://doi.org/10.1016/j.omto.2023.08.008
- Peters R.A. // Mechanism of the toxicity of the active constituent of dichapetalum cymosum and related compounds. In: Advances in Enzymology / Eds. Nord F.F. Geneva: Interscience Publishers Inc., 1957. P. 113–159.
- Cleveland D.W., Fischer S.G., Kirschner M.W., Laemmli U.K. // J. Biol. Chem. 1977. V. 252. P. 1102– 1106.
- Mosmann T. // J. Immunol. Methods. 1983. V. 65. P. 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
Дополнительные файлы
