Complexes of pivaloyltrifluoroacetonates of potassium and rubidium with 18-crown-6 ether: synthesis, structure, thermal properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the search for volatile fluorinated compounds of potassium and rubidium, new complexes of the corresponding pivaloyltrifluoroacetonates (Ptac) with 18-crown-6 ether, [K(18C6)(Ptac)] (I) and [Rb(18C6)(Ptac)] (II), were synthesized. The compounds were characterized by elemental analysis, IR spectroscopy, and X-ray fluorescence analysis, and their structures were studied by X-ray diffraction in the range of 100–400 K (CCDC nos. 2429226–2429232 (I), 2429233–2429239 (II)). The complexes are isostructural and have an insular mononuclear structure, with M…H and M…C contacts involving the tert-butyl group between fragments, forming chains. The thermal expansion tensors are elongated along this direction. X-ray diffraction analysis showed that the rubidium cation in such a complex can complete its coordination sphere with a solvent molecule (chloroform, CCDC no. 2429240 (IIs)). For I, II, and IIs, Hirshfeld surfaces were analyzed and a search for pseudoperiodicity in the crystal packings was carried out by the translational sublattice method. Thermogravimetric analysis showed that, unlike the initial pivaloyltrifluoroacetonates, complexes I and II are volatile and promising for testing in gas-phase processes of thin-film material deposition.

About the authors

D. V. Kochelakov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: kochelakov@niic.nsc.ru
Novosibirsk, Russia

E. S. Vikulova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Devi A. // Coord. Chem. Rev. 2013. V. 257. № 23–24. P. 3332. https://doi.org/10.1016/j.ccr.2013.07.025
  2. Emslie D.J., Chadha P., Price J.S. // Coord. Chem. Rev. 2013. V. 257. № 23–24. P. 3282. https://doi.org/10.1016/j.ccr.2013.07.010
  3. Johnson R.W., Hultqvist A., Bent S.F. // Mater. Today. 2014. V. 17. № 5. P. 236. https://doi.org/10.1016/j.mattod.2014.04.026
  4. Romanov M.V., Korsakov I.E., Kaul A.R. et al. // Chem. Vap. Depos. 2004. V. 10. № 6. P. 318. https://doi.org/10.1002/cvde.200306302
  5. Sukhorukov Yu.P., Telegin A.V., Bessonov V.D. et al. // J. Magn. Magn. Mater. 2014. V. 367. P. 53. https://doi.org/10.1016/j.jmmm.2014.04.055
  6. Sønsteby H.H., Bratvold J.E., Killi V.A.-L.K. et al. // J. Vac. Sci. Technol. A. 2020. V. 38. № 6. 060804. 10.1116/6.0000589' target='_blank'>https://doi.org/doi: 10.1116/6.0000589
  7. Nuwayhid R.B., Fontecha D., Kozen A.C. et al. // Dalton Trans. 2022. V. 51. № 5. P. 2068. https://doi.org/10.1039/D1DT03736F
  8. Tsymbarenko D., Korsakov I., Mankevich A. et al. // ECS Trans. 2009. V. 25. № 8. P. 633. https://doi.org/10.1149/1.3207650
  9. Onoe A., Tasaki Y., Chikuma K. // J. Cryst. Growth. 2005. V. 277. № 1–4. P. 546. https://doi.org/10.1016/j.jcrysgro.2005.01.077
  10. Sønsteby H.H., Weibye K., Bratvold J.E. et al. // Dalton Trans. 2017. V. 46. № 46. P. 16139. https://doi.org/10.1039/C7DT03753H
  11. Weiß A., Popov G., Atosuo E. et al. // Chem. Mater. 2022. V. 34. № 13. P. 6087. https://doi.org/10.1021/acs.chemmater.2c01202
  12. Ojeda-Amador A.I., Martínez-Martínez A.J., Kennedy A.R. et al. // Inorg. Chem. 2016. V. 55. № 11. P. 5719. https://doi.org/10.1021/acs.inorgchem.6b00839
  13. Малкерова И.П., Белова Е.В., Каюмова Д.Б. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 638 (Malkerova I.P., Belova E.V., Kayumova D.B. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 5. P. 569). https://doi.org/10.1134/S0036023623600557
  14. Troyanov S.I., Gorbenko O.Yu., Bosak A.A. // Polyhedron. 1999. V. 18. № 26. P. 3505. https://doi.org/10.1016/S0277-5387(99)00288-0
  15. Dhanapala B.D., Munasinghe H.N., Suescun L. et al. // Inorg. Chem. 2017. V. 56. № 21. P. 13311–13320. https://doi.org/10.1021/acs.inorgchem.7b02075
  16. Singh V.S., Dhakate S.R., Belsare P.D. et al. // J. Opt. 2023. V. 52. № 4. P. 2153. https://doi.org/10.1007/s12596-023-01226-6
  17. Vink T.J., Balkenende A.R., Verbeek R.G.F.A. et al. // Appl. Phys. Lett., 2002. Т. 80. V. 12. P. 2216. https://doi.org/10.1063/1.1464229
  18. Wong K.W., Wang Y.M., Lee S.T. et al. // Appl. Surf. Sci. 1999. V. 140. № 1–2. P. 144. https://doi.org/10.1016/S0169-4332(98)00582-0
  19. Dear R.E.A., Fox W.B., Fredericks R.J. et al. // Inorg. Chem. 1970. V. 9. № 11. P. 2590. https://doi.org/10.1021/ic50093a044
  20. White V.E. // Org. Mass Spectr. 1978. V. 13. № 9. P. 495. https://doi.org/10.1002/oms.1210130903
  21. Belcher R., Dudeney A.W.L., Stephen W.I. // J. Inorg. Nucl. Chem. 1969. V. 31. № 3. P. 625. https://doi.org/10.1016/0022-1902(69)80007-2
  22. Кочелаков Д.В., Викулова Е.С., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 1. 104595 (Kochelakov D.V., Vikulova E.S., Kuratieva N.V. et al. // J. Struct. Chem. 2023. V. 64. № 1. P. 82). https://doi.org/10.1134/S0022476623010055
  23. Fabbrizzi L. // ChemTexts. 2020. № 6. P. 1. https://doi.org/10.1007/s40828-020-0107-2
  24. Steed J.W. // Coord. Chem. Rev. 2001. V. 215. № 1. P. 171. https://doi.org/10.1016/S0010-8545(01)00317-4
  25. Кочелаков Д.В., Викулова Е.С., Куратьева Н.В. и др. // Журн. структур. химии. 2022. Т. 63. № 3. С. 375 (Kochelakov D.V., Vikulova E.S., Kuratieva N.V. et al. // J. Struct. Chem. 2022. V. 63. № 3. P. 476). https://doi.org/10.1134/S0022476622030143
  26. Evans W.J., Rego D.B., Ziller J.W. // Polyhedron. 2006. V. 25. № 14. P. 2691. https://doi.org/10.1016/j.poly.2006.03.011
  27. Tikhova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sust. Develop. 2022. V. 30. № 6. P. 640. https://doi.org/10.15372/csd2022427
  28. Bruker AXS Inc. APEX2 (version 2012.2-0), SAINT (version 8.18c), and SADABS (version 2008/1). Madison (WI, USA): Bruker Advanced X-ray Solutions, 2000–2012.
  29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. 10.1107/S2053229614024218' target='_blank'>https://doi: 10.1107/S2053229614024218
  30. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr., 2021. V. 54, P. 1006. https://doi.org/10.1107/S1600576721002910
  31. Pedersen C.J. // J. Am. Chem. Soc. 1967. V. 89. № 26. P. 7017. https://doi.org/10.1021/ja01002a035
  32. Cambillau C., Bram G., Corset J. et al. // Tetrahedron. 1978. V. 34. № 17. P. 2675. https://doi.org/10.1016/0040-4020(78)88404-X
  33. Gagné O.C., Hawthorne F.C. // Acta Crystallogr. B. 2016. V. 72. № 4. P. 602. https://doi.org/10.1107/S2052520616008507
  34. Rusanov E.B., Wörle M.D., Kovalenko M.V. et al. // Acta Crystallogr. B. 2024. V. 80. № 2. P. 135. https://doi.org/10.1107/S2052520624001586
  35. Klett J. // Chem. Eur. J. 2020. V. 27. № 3. P. 888. https://doi.org/10.1002/chem.202002812
  36. Bickelhaupt F.M., Solà M., Fonseca Guerra C. // J. Mol. Model. 2006. V. 12. № 5. P. 563. https://doi.org/10.1007/s00894-005-0056-0
  37. Langreiter T., Kahlenberg V. // Crystals. 2015. V. 5. № 1. P. 143. https://doi.org/10.3390/cryst5010143
  38. Savchenkov A.V., Uhanov A.S., Grigoriev M.S. et al. // Dalton Trans. 2021. V. 50. № 12. P. 4210. https://doi.org/10.1039/D0DT04083E
  39. Gromilov S.A., Borisov S.V. // J. Struct. Chem. 2003. V. 44. № 4. P. 664. https://doi.org/10.1023/B:JORY.0000017943.51537.b7
  40. Borisov S.V. // J. Struct. Chem. 1986. V. 27. P. 164. https://doi.org/10.1080/00236568608584831
  41. Borisov S.V. // J. Struct. Chem. 1992. V. 33, P. 112. https://doi.org/10.3828/extr.1992.33.2.112
  42. Gromilov S.A., Bykova E.A., Borisov S.V. // Cryst. Rep. 2011. V. 56. № 6. P. 947. https://doi.org/10.1134/S1063774511060101
  43. Peddagopu N., Sanzaro S., Rossi P. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 36. P. 3776. https://doi.org/10.1002/ejic.202100553
  44. McMurdie H., Morris M., Evans E. et al. // Powder Diffraction. 1986, V. 1, P. 72.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences