Structure and properties of magnesium complexes with bulky β-diketones: 2,2,6,6-tetramethylheptane-3,5-dione and its methoxy-substituted derivative

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In order to study the effect of bulky terminal substituents in the β-diketonate ligand on the structure and properties of volatile magnesium compounds, complexes with 2,2,6,6-tetramethylheptane-3,5-dione (HThd) and, for the first time, with 2-methoxy-2,6,6-trimethylheptane-3,5-dione (HZis) were obtained. The complexes [Mg2(L)4] (L = Thd (I), Zis (II)), the synthesis intermediates [Mg(H2O)2(L)2] (L = Thd (III), Zis (IV)), and aqua derivative [Mg2(H2O)(Zis)4] (V) were characterized by elemental analysis and IR spectroscopy. The structures of binuclear complexes and the synthesis by-product [Mg7(Zis)6(μ-OH)6]Cl2·5CHCl3 (VI) were established by X-ray diffraction (CCDC nos. 2424128 (Ia, a new polymorph), 2424130 (II), 2424129 (V), 2424126 (V · 1/2CHCl3), 2424127 (VI)). Both [Mg2(L)4] molecules are characterized by asymmetric environment of metal centers (Mg C.N. is 5, 6), but in I, three μ,κ21-ligands occupy bridging positions, while in II, two ligands have different coordinations (μ,κ21 and μ,κ2(O,O′):κ2(O′,OOMe)). The inclusion of water in II to give V is not accompanied by a considerable rearrangement of the structure, but C.N. of the unsaturated metal center changes from 5 to 6. It was shown by thermogravimetry that complex I is more volatile and low-melting than II.

About the authors

E. A. Rikhter

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk National Research State University

Novosibirsk, Russia; Novosibirsk, Russia

E. S. Vikulova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: lazorevka@mail.ru
Novosibirsk, Russia

T. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

A. V. Strigunovskaya

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk National Research State University

Novosibirsk, Russia; Novosibirsk, Russia

N. B. Morozova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Fahlman B.D. // Curr. Org. Chem. 2006. V. 10. № 9. P. 1021.
  2. Keeney L., Povey I.M. Tailored functional oxide nanomaterials: from design to multi-purpose applications, 2022. P. 1.
  3. Костюк Н.Н., Дик Т.А. // Журн. общ. химии. 2022. Т. 92. № 10. С. 2186 (Kostyuk N.N., Dick T.A. // Russ. J. Gen. Chem. 2022. V. 92. P. 2186). https://doi.org/10.1134/S1070363222100310
  4. Makarenko A.M., Zaitsau D.H., Zherikova K.V. // Coatings. 2023. V. 13. № 3. P. 535.
  5. Drozdov A., Troyanov S. // Main Group Met. Chem. 1996. V. 19. № 9. P. 547.
  6. Otway D.J., Rees W.S. // Coord. Chem. Rev. 2000. V. 210. № 1. P. 279.
  7. Fenton D.E. // J. Chem. Soc. A. 1971. P. 3481.
  8. Gordon R.G., Barry S.T., Liu X. et al. // MRS Proceedings. 1999. V. 574. P. 23.
  9. Hatanpää T., Kansikas J., Mutikainen I., Leskelä M. // Inorg. Chem. 2001. V. 40. № 4. P. 788.
  10. Fragalà M.E., Toro R.G., Rossi P. et al. // Chem. Mater. 2009. V. 21. № 10. P. 2062.
  11. Zherikova K.V., Vikulova E.S., Makarenko A.M. et al. // Thermochim. Acta. 2020. V. 689. P. 178643.
  12. Викулова Е.С., Рихтер Э.А., Пирязев Д.А. и др. // Журн. структур. химии. 2020. Т. 61. № 9. С. 1405 (Vikulova E.S., Rikhter E.A., Piryazev D.A. et al. // J. Struct. Chem. 2020. V. 61. № 9. P. 1405). https://doi.org/10.1134/S0022476620090073
  13. Sartori A., El Habra N., Bolzan M. et al. // Chem. Mater. 2011. V. 23. № 5. P. 1113.
  14. Halz J.H., Heiser C., Merzweiler K. // IUCrData. 2022. V. 7. № 11. P. 221035.
  15. El-Kaderi H.M., Xia A., Heeg M.J. et al. // Organometallics. 2004. V. 23. № 14. P. 3488.
  16. Sedai B., Heeg M.J., Winter C.H. // J. Organomet. Chem. 2008. V. 693. № 23. P. 3495.
  17. Matthews J.S., Just O., Obi-Johnson B., Rees W.S. // Chem. Vap. Deposition. 2000. V. 6. № 3. P. 129.
  18. Pousaneh E., Rüffer T., Assim K. et al. // RSC Adv. 2018. V. 8. № 35. P. 19668.
  19. Weiss E., Kopf J., Gardein T. et al. // Chem. Ber. 1985. V. 118. № 9. P. 3529.
  20. Куратьева Н.В., Викулова Е.С., Жерикова К.В. и др. // Журн. структур. химии. 2018. Т. 59. С. 131 (Kuratieva N.V., Vikulova E.S., Zherikova K.V. et al. // J. Struct. Chem. 2018. V. 59. P. 131). https://doi.org/10.1134/s0022476618010195
  21. Hatanpää T., Ihanus J., Kansikas J. et al. // Chem. Mater. 1999. V. 11. № 7. P. 1846.
  22. Kuchumov B.M., Shevtsov Y.V., Semyannikov P.P. et al. // Surf. Coat. Technol. 2009. V. 25. № 8. P. 927.
  23. Manin M., Thollon S., Emieux F. et al. // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1424.
  24. Okada T., Komaki T. // Japan. J. Appl. Phys. 2008. V. 47. № 3R. P. 1699.
  25. Zhang Z., Filez M., Solano E. et al. // Nanoscale. 2024. V. 16. № 10. P. 5362.
  26. Atosuo E., Mäntymäki M., Ritala M. // Adv. Mater. Interfaces. 2024. P. 2400372.
  27. Arunasalam V.C., Drake S.R., Hursthouse M.B. et al. // Dalton Trans. 1996. P. 2435.
  28. Петрова Л.А., Дудин А.В., Махаев В.Д. и др. // Журн. неорган химии. 2005. Т. 50. № 10. С. 1541 (Petrova L.A., Dudin A.V., Makhaev V.D. et al. // Russ. J. Inorg. Chem. 2005. V. 50. № 10. P. 1541).
  29. Igumenov I.K., Semyannikov P.P., Belaya S.V. et al. // Polyhedron. 1996. V. 15. № 24. P. 4521.
  30. Уркасым кызы С., Крисюк В.В., Тургамбаева А.Е. и др. // Журн. структур. химии. 2019. Т. 60. С. 1635 (Urkasym kyzy S., Krisyuk V.V., Turgambaeva A.E. et al. // J. Struct. Chem. 2019. V. 60. P. 1635). https://doi.org/10.1134/S0022476619100093
  31. Уркасым кызы С., Рыбалова Т.В., Комаров В.Ю. и др. // Журн. структур. химии. 2022. Т.63. № 4. С. 524 (Urkasym kyzy S., Rybalova T.V., Komarov V.Y. et al. // J. Struct. Chem. 2022. V. 63. № 4. P. 524). https://doi.org/10.1134/S0022476619100093
  32. Krisyuk V.V., Sukhikh A.S., Berezin A.S. et al. // Polyhedron. 2024. V. 261. P. 117159.
  33. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  34. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  35. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
  36. Alvarez S., Alemany P., Casanova D. et al. // Coord. Chem. Rev. 2005. V. 249. № 17–18. P. 1693.
  37. Krisyuk V.V., Baidina I.A., Turgambaeva A.E. et al. // J. Organomet. Chem. 2016. V. 819. P. 115.
  38. Fakheri H., Tayyari S.F., Heravi M.M. et al. // J. Mol. Struct. 2017. V. 1150. P. 340.
  39. Wagner C.C., Baran E.J., Piro O.E. // J. Inorg. Biochem. 1999. V. 73. P. 259.
  40. Pye C.C., Rudolph W.W. // J. Phys. Chem. 1998. V. 102. P. 9933.
  41. Baxter I., Darr J.A., Hursthouse M.B. et al. // J. Chem. Crystallogr. 1998. V. 28. № 4. P. 267.
  42. Ahmed M.A., Fjellvåg H., Kjekshus A. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. № 5. P. 770.
  43. Сысоев С.В., Кузин Т.М., Зеленина Л.Н. и др. // Журн. неорган химии. 2020. Т. 65. № 5. С. 747 (Sysoev S.V., Kuzin T.M., Zelenina L.N. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 5. P. 747). https://doi.org/10.1134/S0036023620050241
  44. Stabnikov P.A., Pervukhina N.V., Kryuchkova N.A. et al. // Inorg. Chem. Commun. 2024. P. 112718.
  45. Guchhait T., Giri M., Mishra S.P. // J. Coord. Chem. 2024. V. 77. № 1–2. P. 49.
  46. Cotton F.A., Wise J.J. // Inorg. Chem. 1966. V. 5. № 7. P. 1200.
  47. Cotton F.A., Wood J.S. // Inorg. Chem. 1964. V. 3. № 2. P. 245.
  48. Janas Z., Jerzykiewicz L.B., Sobota P. // New J. Chem. 1999. V. 23. № 2. P. 185.
  49. Utko J., Lis T. // CSD Communication. 2019.
  50. Linnert M., Bruhn C., Schmidt H. et al. // Polyhedron. 2008. V. 27. № 1. P. 151.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences