Mechanisms of therapeutic action of monoclonal antibodies to the calcitonin gene-related peptide (CGRP) ligand-receptor system in migraine
- Авторлар: Sokolov A.Y.1, Skiba I.B.2, Lyubashina O.A.1
-
Мекемелер:
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- Pavlov First Saint Petersburg State Medical University
- Шығарылым: Том 56, № 2 (2025)
- Беттер: 3-18
- Бөлім: Articles
- URL: https://consilium.orscience.ru/0301-1798/article/view/685806
- DOI: https://doi.org/10.31857/S0301179825020012
- EDN: https://elibrary.ru/TJLEHN
- ID: 685806
Дәйексөз келтіру
Аннотация
Migraine is one of the primary forms of headache, which affects at least 12% of the world's population. The current understanding of the pathogenesis of this cephalgia is based on the so-called trigeminovascular theory, within which the key role is given to the calcitonin gene-related peptide (CGRP), a neurotransmitter that plays an important role in the peripheral and central mechanisms of the migraine development. Long-term in-depth study of the pro-migraine properties of CGRP has led to the emergence of a fundamentally new class of drugs for the treatment of migraine, which includes CGRP receptor antagonists (gepants) and monoclonal antibodies (mAbs) that block either the peptide itself or its receptors (CGRPR). The review discusses in detail the pharmacodynamics of anti-CGRP/CGRPR-mAbs as prophylactic therapy for migraine, with an emphasis on the results of experimental studies performed on preclinical models of the disease.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Sokolov
Pavlov Institute of Physiology of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: alexey.y.sokolov@gmail.com
Ресей, St. Petersburg, 199034
I. Skiba
Pavlov First Saint Petersburg State Medical University
Email: yaver-99@mail.ru
Ресей, St. Petersburg, 179022
O. Lyubashina
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: lyubashinaoa@infran.ru
Ресей, St. Petersburg, 199034
Әдебиет тізімі
- Амелин А.В., Соколов А.Ю., Ваганова Ю.С. Мигрень. От патогенеза до лечения. МЕДпресс-информ. М. 2023. 516 с.
- Клинические рекомендации «Мигрень» (одобрены Минздравом России), год утверждения 2024. URL: https://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=LAW&n=489415#utm_campaign=med&utm_source=consultant&utm_medium=email&utm_content=body (дата обращения 25.01.2025)
- Соколов А.Ю., Скиба Я.Б., Любашина О.А. Нейрофизиологические и сосудистые механизмы действия серотонинергических средств для купирования приступа мигрени // Успехи физиол. наук. 2023. Т. 54. № 3. С. 53–76. https://doi.org/10.31857/S0301179823030050
- Alsaadi T., Kayed D.M., Al-Madani A. et al. Consensus-Based Recommendations on the Use of CGRP-Based Therapies for Migraine Prevention in the UAE // Neurol. Ther. 2023. V. 12. № 6. P. 1845–1865. https://doi.org/10.1007/s40120-023-00550-0
- Ashina M., Hansen J.M., Do T.P. et al. Migraine and the trigeminovascular system-40 years and counting // Lancet Neurol. 2019. V. 18. P. 795–804. https://doi.org/10.1016/S1474-4422(19)30185-1
- Ashina H., Schytz H.W., Ashina M. CGRP in Human Models of Migraine // Handb. Exp. Pharmacol. 2019. V. 255. P. 109–120. https://doi.org/10.1007/164_2018_128
- Basedau H., Peng K.P., Schellong M., May A. Double-blind, randomized, placebo-controlled study to evaluate erenumab-specific central effects: an fMRI study // J. Headache Pain. 2024. V. 25. P. 5. https://doi.org/10.1186/s10194-023-01709-8
- Basedau H., Sturm L.M., Mehnert J. et al. Migraine monoclonal antibodies against CGRP change brain activity depending on ligand or receptor target – an fMRI study // Elife. 2022. V. 11. e77146. https://doi.org/10.7554/eLife.77146
- Benedicter N., Messlinger K., Vogler B. et al. Semi-Automated Recording of Facial Sensitivity in Rat Demonstrates Antinociceptive Effects of the Anti-CGRP Antibody Fremanezumab // Neurol. Int. 2023. V. 15. №2. P. 622–637. https://doi.org/10.3390/neurolint15020039
- Benedicter N., Vogler B., Kuhn A. et al. Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception-Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab // Cells. 2024. V. 13. №7. P. 572. https://doi.org/10.3390/cells13070572
- Biscetti L., Cresta E., Cupini L.M., Calabresi P., Sarchielli P. The putative role of neuroinflam-mation in the complex pathophysiology of migraine: From bench to bedside // Neurobiol. Dis. 2023. V. 180. P. 106072. https://doi.org/10.1016/j.nbd.2023.106072
- Braca S., Miele A., Stornaiuolo A. et al. Are anti-calcitonin gene-related peptide monoclonal antibodies effective in treating migraine aura? A pilot prospective observational cohort study // Neurol. Sci. 2024. V. 45. P. 1655–1660. https://doi.org/10.1007/s10072-023-07241-6
- Caronna E., Alpuente A., Torres-Ferrus M., Pozo-Rosich P. CGRP monoclonal antibodies and CGRP receptor antagonists (Gepants) in migraine prevention // Handb. Clin. Neurol. 2024. V. 199. P. 107–124. https://doi.org/10.1016/B978-0-12-823357-3.00024-0
- Carter S.C., Cucchiara B., Reehal N. et al. Effect of CGRP inhibitors on interictal cerebral hemodynamics in individuals with migraine // Front. Neurol. 2024. V. 15. P. 1399792. https://doi.org/10.3389/fneur.2024.1399792
- Casillo F., Sebastianelli G., Di Renzo A. et al. The monoclonal CGRP-receptor blocking antibody erenumab has different effects on brainstem and cortical sensory-evoked responses // Cephalalgia. 2022. V. 42. P. 1236–1245. https://doi.org/10.1177/03331024221103811
- Charbit A.R., Akerman S., Holland P.R., Goadsby P.J. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohisto-chemical study // J. Neurosci. 2009. V. 29. P. 12532–41. https://doi.org/10.1523/JNEUROSCI.2887-09.2009
- Charles A.C., Digre K.B., Goadsby P.J. et al. Calcitonin gene-related peptide-targeting therapies are a first-line option for the prevention of migraine: An American Headache Society position statement update. Headache. 2024. V. 64. P. 333–341. https://doi.org/10.1111/head.14692
- Chen S.T., Wu J.W. A new era for migraine: The role of calcitonin gene-related peptide in the trigeminovascular system // Prog. Brain Res. 2020. V. 255. P. 123–142. https://doi.org/10.1016/bs.pbr.2020.05.012
- Close L.N., Eftekhari S., Wang M., Charles A.C., Russo A.F. Cortical spreading depression as a site of origin for migraine: Role of CGRP // Cephalalgia. 2019. V. 39. P. 428–434. https://doi.org/10.1177/0333102418774299
- Cottier K.E., Galloway E.A., Calabrese E.C. et al. Loss of Blood-Brain Barrier Integrity in a KCl-Induced Model of Episodic Headache Enhances CNS Drug Delivery // eNeuro. 2018. V. 5. ENEURO.0116-18.2018. https://doi.org/ 10.1523/ENEURO.0116-18.2018
- Cottrell G.S. CGRP Receptor Signalling Pathways // Handb. Exp. Pharmacol. 2019. V. 255. P. 37–64. https://doi.org/10.1007/164_2018_130
- Covasala O., Stirn S.L., Albrecht S., De Col R., Messlinger K. Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity // J. Neurophysiol. 2012. V. 108. P. 431–440. https://doi.org/10.1152/jn.00167.2011
- Cresta E., Bellotti A., Rinaldi G., Corbelli I., Sarchielli P. Effect of anti-CGRP-targeted therapy on migraine aura: Results of an observational case series study // CNS Neurosci. Ther. 2024. V. 30. e14595. https://doi.org/10.1111/cns.14595
- Dalkara T., Kaya Z., Erdener Ş.E. Unraveling the interplay of neuroinflammatory signaling between parenchymal and meningeal cells in migraine headache // J. Headache Pain. 2024. V. 25. P. 124. https://doi.org/10.1186/s10194-024-01827-x
- Danno D., Imai N., Kitamura S. et al. Efficacy of galcanezumab in migraine central sensitization. Sci. Rep. 2024. V. 14. P. 21824. https://doi.org/10.1038/s41598-024-72282-6
- De Logu F., Nassini R., Landini L., Geppetti P. Pathways of CGRP Release from Primary Sensory Neurons // Handb. Exp. Pharmacol. 2019. V. 255. P. 65–84. https://doi.org/10.1007/164_2018_145
- De Matteis E., Guglielmetti M., Ornello R. et al. Targeting CGRP for migraine treatment: Mechanisms, antibodies, small molecules, perspectives // Expert Rev. Neurother. 2020. V. 20. P. 627–641. https://doi.org/10.1080/14737175.2020.1772758
- de Vries T., Rubio-Beltrán E., van den Bogaerdt A. et al. Pharmacology of erenumab in human isolated coronary and meningeal arteries: Additional effect of gepants on top of a maximum effect of erenumab // Br. J. Pharmacol. 2024. V. 181. P. 1720–1733. https://doi.org/10.1111/bph.16322
- Diener H.C., RPR100893 Study Group. RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks // Cephalalgia. 2003. V. 23. P. 183–185. https://doi.org/10.1046/j.1468-2982.2003.00496.x
- Dux M., Vogler B., Kuhn A. et al. The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow // Cells. 2022. V. 28. P. 1768. https://doi.org/10.3390/cells11111768
- Edvinsson J.C., Reducha P.V., Sheykhzade M. et al. Neurokinins and their receptors in the rat trigeminal system: Differential localization and release with implications for migraine pain // Mol. Pain. 2021. V. 17. P. 17448069211059400. https://doi.org/10.1177/17448069211059400
- Edvinsson J.C.A., Haanes K.A., Edvinsson L. Neuropeptides and the Nodes of Ranvier in Cranial Headaches. Front. Physiol. 2022. V. 12. P. 820037. https://doi.org/10.3389/fphys.2021.820037
- Edvinsson L., Warfvinge K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia. 2019. V. 39. P. 366–373. https://doi.org/10.1177/0333102417736900
- Edvinsson L., Uddman R. Neurobiology in primary headaches // Brain Res. Brain Res. Rev. 2005. V. 48. P. 438–456. https://doi.org/10.1016/j.brainresrev.2004.09.007
- Edvinsson L. The CGRP Pathway in Migraine as a Viable Target for Therapies // Headache. 2018. V. 58. P. 33–47. https://doi.org/10.1111/head.13305
- Fischer M.J., Koulchitsky S., Messlinger K. The nonpeptide calcitonin gene-related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus // J. Neurosci. 2005. V. 25. P. 5877–5883. https://doi.org/10.1523/JNEUROSCI.0869-05.2005
- Fischer M.J.M., Schmidt J., Koulchitsky S. et al. Effect of a calcitonin gene-related peptide-binding L-RNA aptamer on neuronal activity in the rat spinal trigeminal nucleus // J. Headache Pain. 2018. V. 19. P. 3. https://doi.org/10.1186/s10194-018-0832-8
- Friedrich N., Németh K., Tanner M. et al. Anti-CGRP antibody galcanezumab modifies the function of the trigeminovascular nocisensor complex in the rat // J. Headache Pain. 2024. V. 25. P. 9. https://doi.org/10.1186/s10194-024-01717-2
- Frimpong-Manson K., Ortiz Y.T., McMahon L.R., Wilkerson J.L. Advances in understanding migraine pathophysiology: a bench to bedside review of research insights and therapeutics // Front. Mol. Neurosci. 2024. V. 17. P. 1355281. https://doi.org/10.3389/fnmol.2024.1355281
- Goadsby P.J., Holland P.R., Martins-Oliveira M. et al. Pathophysiology of Migraine: A Disorder of Sensory Processing // Physiol. Rev. 2017. V. 97. P. 553–622. https://doi.org/10.1152/physrev.00034.2015
- Goldstein D.J., Offen W.W., Klein E.G. et al. Lanepitant, an NK-1 antagonist, in migraine prevention // Cephalalgia. 2001. V. 21. P. 102–106. https://doi.org/10.1046/j.1468-2982.2001.00161.x
- González-Hernández A., Marichal-Cancino B.A., García-Boll E., Villalón C.M. The locus of Action of CGRPergic Monoclonal Antibodies Against Migraine: Peripheral Over Central Mechanisms // CNS Neurol. Disord. Drug Targets. 2020. V. 19. P. 344–359. https://doi.org/10.2174/1871527319666200618144637
- González-Hernández A., Villalón C.M. The influence of pharmacodynamics and pharmacokinetics on the antimigraine efficacy and safety of novel anti-CGRPergic pharmacotherapies: A narrative review // Expert Opin. Drug Metab. Toxicol. 2025. V. 21. P. 41–52. https://doi.org/10.1080/17425255.2024.2409253
- Grell A.S., Haanes K.A., Johansson S.E., Edvinsson L., Sams A. Fremanezumab inhibits vasodilatory effects of CGRP and capsaicin in rat cerebral artery – Potential role in conditions of severe vasoconstriction // Eur. J. Pharmacol. 2019. V. 864. P. 172726. https://doi.org/10.1016/j.ejphar.2019.172726
- Guo S., Vollesen A.L.H., Olesen J., Ashina M. Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain. 2016. V. 157. P. 2773–2781. https://doi.org/10.1097/j.pain.0000000000000702
- Haanes K.A., Edvinsson L. Pathophysiological Mechanisms in Migraine and the Identification of New Therapeutic Targets. CNS Drugs. 2019. V. 33. P. 525–537. https://doi.org/10.1007/s40263-019-00630-6
- Holland P.R., Saengjaroentham C., Vila-Pueyo M. The role of the brainstem in migraine: Potential brainstem effects of CGRP and CGRP receptor activation in animal models. Cephalalgia. 2019. V. 39. P. 390–402. https://doi.org/ 10.1177/0333102418756863
- Huang Y., Brodda-Jansen G., Lundeberg T., Yu L.C. Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: An effect attenuated by naloxone. Brain Res. 2000. V. 873. P. 54–59. https://doi.org/10.1016/s0006-8993(00)02473-2
- Iyengar S., Johnson K.W., Ossipov M.H., Aurora S.K. CGRP and the Trigeminal System in Migraine. Headache. 2019. V. 59. P. 659–681. https://doi.org/ 10.1111/head.13529
- Johnson K.W., Morin S.M., Wroblewski V.J., Johnson M.P. Peripheral and central nervous system distribution of the CGRP neutralizing antibody [125I] galcanezumab in male rats. Cephalalgia. 2019. V. 39. P. 1241–1248. https://doi.org/10.1177/0333102419844711
- Kageneck C., Nixdorf-Bergweiler B.E., Messlinger K., Fischer M.J. Release of CGRP from mouse brainstem slices indicates central inhibitory effect of triptans and kynurenate // J. Headache Pain. 2014. V. 15. P. 7. https://doi.org/10.1186/1129-2377-15-7
- Karsan N., Gosalia H., Goadsby P.J. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides // Int. J. Mol. Sci. 2023. V. 24. P. 11993. https://doi.org/10.3390/ijms241511993
- Kim Y.S., Kim M., Choi S.H. et al. Altered Vascular Permeability in Migraine-associated Brain Regions: Evaluation with Dynamic Contrast-enhanced MRI // Radiology. 2019. V. 292. P. 713–720. https://doi.org/10.1148/radiol.2019182566
- Kopruszinski C.M., Xie J.Y., Eyde N.M. et al. Prevention of stress- or nitric oxide donor-induced medication overuse headache by a calcitonin gene-related peptide antibody in rodents // Cephalalgia. 2017. V. 37. P. 560–570. https://doi.org/10.1177/0333102416650702
- Koulchitsky S., Fischer M.J., Messlinger K. Calcitonin gene-related peptide receptor inhibition reduces neuronal activity induced by prolonged increase in nitric oxide in the rat spinal trigeminal nucleus // Cephalalgia. 2009. V. 29. P. 408–417. https://doi.org/10.1111/j.1468-2982.2008.01745.x
- Labastida-Ramírez A., Caronna E., Gollion C. et al. Mode and site of action of therapies targeting CGRP signaling // J. Headache Pain. 2023. V. 24. P. 125. https://doi.org/10.1186/s10194-023-01644-8
- Lassen L.H., Jacobsen V.B., Haderslev P.A. et al. Involvement of calcitonin gene-related peptide in migraine: Regional cerebral blood flow and blood flow velocity in migraine patients // J. Headache Pain. 2008. V. 9. P. 151–157. https://doi.org/10.1007/s10194-008-0036-8
- Lennerz J.K., Rühle V., Ceppa E.P. et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution // J. Comp. Neurol. 2008. V. 507. P. 1277–1299. https://doi.org/10.1002/cne.21607
- Levy D., Burstein R., Strassman A.M. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: Implications for the pathophysiology of migraine // Ann. Neurol. 2005. V. 58. P. 698–705. https://doi.org/10.1002/ana.20619
- Malhotra R. Understanding migraine: Potential role of neurogenic inflammation // Ann. Indian Acad. Neurol. 2016. V. 19. P. 175–182. https://doi.org/10.4103/0972-2327.182302
- Manganotti P., Deodato M., D'Acunto L. et al. Effects of Anti-CGRP Monoclonal Antibodies on Neurophysiological and Clinical Outcomes: A Combined Transcranial Magnetic Stimulation and Algometer Study // Neurol. Int. 2024. V. 16. P. 673–688. https://doi.org/10.3390/neurolint16040051
- Mason B.N., Kaiser E.A., Kuburas A. et al. Induction of Migraine-Like Photophobic Behavior in Mice by Both Peripheral and Central CGRP Mechanisms // J. Neurosci. 2017. V. 37. P. 204–216. https://doi.org/10.1523/JNEUROSCI.2967-16.2016
- Medrea I., Cooper P., Langman M. et al. Updated Canadian Headache Society Migraine Prevention Guideline with Systematic Review and Meta-analysis // Can. J. Neurol. Sci. 2024. V. 7. P. 1–23. https://doi.org/10.1017/cjn.2024.285
- Melo-Carrillo A., Noseda R., Nir R.R. et al. Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody // J. Neurosci. 2017. V. 37. P. 7149–7163. https://doi.org/10.1523/JNEUROSCI.0576-17.2017
- Melo-Carrillo A., Schain A.J., Stratton J., Strassman A.M., Burstein R. Fremanezumab and its isotype slow propagation rate and shorten cortical recovery period but do not prevent occurrence of cortical spreading depression in rats with compromised blood-brain barrier // Pain. 2020. V. 161. P. 1037–1043. https://doi.org/10.1097/j.pain.0000000000001791
- Melo-Carrillo A., Strassman A.M., Nir R.R. et al. Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ) But Not Unmyelinated (C) Meningeal Nociceptors // J. Neurosci. 2017. V. 37. P. 10587–10596. https://doi.org/10.1523/JNEUROSCI.2211-17.2017
- Messlinger K., Russo A.F. Current understanding of trigeminal ganglion structure and function in headache // Cephalalgia. 2019. V. 39. P. 1661–1674. https://doi.org/10.1177/0333102418786261
- Messlinger K. The big CGRP flood – sources, sinks and signalling sites in the trigeminovascular system // J. Headache Pain. 2018. V. 19. P. 22. https://doi.org/ 10.1186/s10194-018-0848-0
- Mi X., Ran L., Chen L., Qin G. Recurrent Headache Increases Blood-Brain Barrier Permeability and VEGF Expression in Rats // Pain Physician. 2018. V. 21. E633–E642.
- Mitsikostas D.D., Sanchez del Rio M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine // Brain Res. Brain Res. Rev. 2001. V. 35. P. 20–35. https://doi.org/10.1016/s0165-0173(00)00048-5
- Moisset X., Demarquay G., de Gaalon S. et al. Migraine treatment: Position paper of the French Headache Society // Rev. Neurol. (Paris). 2024. V. 180. P. 1087–1099. https://doi.org/10.1016/j.neurol.2024.09.008
- Muddam M.R., Obajeun O.A., Abaza A. et al. Efficacy and Safety of Anti-calcitonin Gene-Related Peptide (CGRP) Monoclonal Antibodies in Preventing Migraines: A Systematic Review // Cureus. 2023. V. 15. e45560. https://doi.org/10.7759/cureus.45560
- Negro A., Martelletti P. Gepants for the treatment of migraine // Expert Opin. Investig. Drugs. 2019. V. 28. P. 555–567. https://doi.org/10.1080/13543784.2019.1618830
- Noseda R., Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain // Pain. 2013. V. 154. Suppl 1:10.1016/j.pain.2013.07.021. https://doi.org/10.1016/j.pain.2013.07.021
- Noseda R., Schain A.J., Melo-Carrillo A. et al. Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier // Cephalalgia. 2020. V. 40. P. 229–240. https://doi.org/10.1177/0333102419896760
- Ohlsson L., Haanes K.A., Kronvall E. et al. Erenumab (AMG 334), a monoclonal antagonist antibody against the canonical CGRP receptor, does not impair vasodilatory or contractile responses to other vasoactive agents in human isolated cranial arteries // Cephalalgia. 2019. V. 39. P. 1745–1752. https://doi.org/10.1177/0333102419867282
- Ohlsson L., Kronvall E., Stratton J., Edvinsson L. Fremanezumab blocks CGRP induced dilatation in human cerebral, middle meningeal and abdominal arteries // J. Headache Pain. 2018. V. 19. P. 66. https://doi.org/10.1186/s10194-018-0905-8
- Olesen J. Provocation of attacks to discover migraine signaling mechanisms and new drug targets: early history and future perspectives – a narrative review // J. Headache Pain. 2024. V. 25. P. 105. https://doi.org/10.1186/s10194-024-01796-1
- Orlando B., Egeo G., Aurilia C., Fiorentini G., Barbanti P. Calcitonin Gene-Related Peptide Monoclonal Antibodies: Key Lessons from Real-World Evidence // Brain Sci. 2024. V. 14. P. 948. https://doi.org/10.3390/brainsci14090948
- Pozo-Rosich P., Storer R.J., Charbit A.R., Goadsby P.J. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons // Cephalalgia. 2015. V. 35. P. 1298–1307. https://doi.org/10.1177/0333102415576723
- Raggi A., Leonardi M., Arruda M. et al. Hallmarks of primary headache: Part 1 – migraine // J. Headache Pain. 2024. V. 25. P. 189. https://doi.org/10.1186/s10194-024-01889-x
- Reducha P.V., Bömers J.P., Edvinsson L., Haanes K.A. Rodent behavior following a dural inflammation model with anti-CGRP migraine medication treatment // Front. Neurol. 2023. V. 14. P. 1082176. https://doi.org/10.3389/fneur.2023.1082176
- Reducha P.V., Edvinsson L., Haanes K.A. Could Experimental Inflammation Provide Better Understanding of Migraines? // Cells. 2022. V. 11. P. 2444. https://doi.org/10.3390/cells11152444
- Rubio-Beltrán E., Labastida-Ramírez A., Haanes K.A. et al. Characterisation of vasodilatory responses in the presence of the CGRP receptor antibody erenumab in human isolated arteries // Cephalalgia. 2019. V. 39. P. 1735–1744. https://doi.org/10.1177/0333102419863027
- Russo A.F., Hay D.L. CGRP physiology, pharmacology, and therapeutic targets: Migrai-ne and beyond // Physiol. Rev. 2023. V. 103. P. 1565–1644. https://doi.org/10.1152/physrev.00059.2021
- Russo A.F. CGRP-based Migraine Therapeutics: How Might They Work, Why So Safe, and What Next? // ACS Pharmacol. Transl. Sci. 2019. V. 2. P. 2–8. https://doi.org/10.1021/acsptsci.8b00036
- Sacco S., Amin F.M., Ashina M. et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update // J. Headache Pain. 2022. V. 23. P. 67. https://doi.org/10.1186/s10194-022-01431-x
- Sakai Y., Dobson C., Diksic M., Aubé M., Hamel E. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis // Neurology. 2008. V. 70. P. 431–439. https://doi.org/10.1212/01.wnl.0000299095.65331.6f
- Schain A.J., Melo-Carrillo A., Stratton J., Strassman A.M., Burstein R. CSD-Induced Arterial Dilatation and Plasma Protein Extravasation Are Unaffected by Fremanezumab: Implications for CGRP's Role in Migraine with Aura // J. Neurosci. 2019. V. 39. P. 6001–6011. https://doi.org/10.1523/JNEUROSCI.0232-19.2019
- Shibata Y. Anti-Calcitonin Gene-Related Peptide Monoclonal Antibody Is Effective for Preventing Migraine Aura Without Headache // Neurol. Int. 2024. V. 16. P. 1279–1284. https://doi.org/10.3390/neurolint16060097
- Sirilertmekasakul C., Panto A., Lekhalawan P. et al. The transition of medication overuse status by acute medication categories in episodic or chronic migraine patients to non-overuse status after receiving anti-CGRP monoclonal antibodies: A systematic review and meta-analysis of phase 3 randomized control trial // Neurol. Sci. 2024. V. 45. P. 4451–4462. https://doi.org/10.1007/s10072-024-07496-7
- Sixt M.L., Messlinger K., Fischer M.J. Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus // Brain. 2009. V. 132. P. 3134–3141. https://doi.org/10.1093/brain/awp168
- Sokolov A.Y., Osipchuk A.V., Skiba I.B., Amelin A.V. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis // Neurochem. J. 2022. V. 16. P. 31–38. https://doi.org/10.1134/S1819712422010123
- Song Y., Zhao S., Peng P. et al. Neuron-glia crosstalk and inflammatory mediators in migraine pathophysiology // Neuroscience. 2024. V. 560. P. 381–396. https://doi.org/10.1016/j.neuroscience.2024.10.006
- Spekker E., Tanaka M., Szabó Á., Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research // Biomedicines. 2021. V. 10. P. 76. https://doi.org/10.3390/biomedicines10010076
- Storer R.J., Akerman S., Goadsby P.J. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat // Br. J. Pharmacol. 2004. V. 142. P. 1171–1181. https://doi.org/10.1038/sj.bjp.0705807
- Summ O., Charbit A.R., Andreou A.P., Goadsby P.J. Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus // Brain. 2010. V. 133. P. 2540–2548. https://doi.org/10.1093/brain/awq224. PMID: 20802202.
- Tana C., Cipollone F., Giamberardino M.A., Martelletti P. New drugs targeting calcitonin gene-related peptide for the management of migraines // Expert Opin. Emerg. Drugs. 2023. V. 28. P. 233–240. https://doi.org/10.1080/14728214.2023.2288334
- Tanei T., Fuse Y., Maesawa S. et al. Real-world clinical results of CGRP monoclonal antibody treatment for medication overuse headache of migraine without abrupt drug discontinuation and no hospitalization // Heliyon. 2024. V. 10. e40190. https://doi.org/10.1016/j.heliyon.2024.e40190
- Tfelt-Hansen P.C. Does sumatriptan cross the blood-brain barrier in animals and man? // J. Headache Pain. 2010. V. 11. P. 5–12. https://doi.org/10.1007/s10194-009-0170-y
- Triller P., Raffaelli B. Anti-CGRP basierte Migränemedikamente – eine Übersicht der Studienlage [Anti-CGRP-based Migraine Medi-cations: A Comprehensive Overview] // Fortschr. Neurol. Psychiatr. 2024. V. 92. P. 277–282. German. https://doi.org/10.1055/a-2276-2239
- Vogler B., Kuhn A., Mackenzie K.D. et al. The Anti-Calcitonin Gene-Related Peptide (Anti-CGRP) Antibody Fremanezumab Reduces Trigeminal Neurons Immunoreactive to CGRP and CGRP Receptor Components in Rats // Int. J. Mol. Sci. 2023. V. 24. P. 13471. https://doi.org/10.3390/ijms241713471
- Wattiez A.S., Sowers L.P., Russo A.F. Calcitonin gene-related peptide (CGRP): Role in migraine pathophysiology and therapeutic targeting // Expert Opin. Ther. Targets. 2020. V. 24. P. 91–100. https://doi.org/10.1080/14728222.2020.1724285
- Yamanaka G., Suzuki S., Morishita N. et al. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine // Int. J. Mol. Sci. 2021. V. 22. P. 8929. https://doi.org/10.3390/ijms22168929
- Yu L.C., Weng X.H., Wang J.W., Lundeberg T. Involvement of calcitonin gene-related peptide and its receptor in anti-nociception in the periaqueductal grey of rats // Neurosci. Lett. 2003. V. 349. P. 1–4. https://doi.org/10.1016/s0304-3940(03)00273-8
- Zhang Y., Zhang Y., Tian K. et al. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine // J. Headache Pain. 2020. V. 21. P. 72. https://doi.org/10.1186/s10194-020-01145-y
- Ziegeler C., Mehnert J., Asmussen K., May A. Central effects of erenumab in migraine patients: An event-related functional imaging study // Neurology. 2020. V. 95. e2794–e2802. https://doi.org/10.1212/WNL.0000000000010740
Қосымша файлдар
