Mechanisms of therapeutic action of monoclonal antibodies to the calcitonin gene-related peptide (CGRP) ligand-receptor system in migraine

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Migraine is one of the primary forms of headache, which affects at least 12% of the world's population. The current understanding of the pathogenesis of this cephalgia is based on the so-called trigeminovascular theory, within which the key role is given to the calcitonin gene-related peptide (CGRP), a neurotransmitter that plays an important role in the peripheral and central mechanisms of the migraine development. Long-term in-depth study of the pro-migraine properties of CGRP has led to the emergence of a fundamentally new class of drugs for the treatment of migraine, which includes CGRP receptor antagonists (gepants) and monoclonal antibodies (mAbs) that block either the peptide itself or its receptors (CGRPR). The review discusses in detail the pharmacodynamics of anti-CGRP/CGRPR-mAbs as prophylactic therapy for migraine, with an emphasis on the results of experimental studies performed on preclinical models of the disease.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Sokolov

Pavlov Institute of Physiology of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: alexey.y.sokolov@gmail.com
Ресей, St. Petersburg, 199034

I. Skiba

Pavlov First Saint Petersburg State Medical University

Email: yaver-99@mail.ru
Ресей, St. Petersburg, 179022

O. Lyubashina

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: lyubashinaoa@infran.ru
Ресей, St. Petersburg, 199034

Әдебиет тізімі

  1. Амелин А.В., Соколов А.Ю., Ваганова Ю.С. Мигрень. От патогенеза до лечения. МЕДпресс-информ. М. 2023. 516 с.
  2. Клинические рекомендации «Мигрень» (одобрены Минздравом России), год утверждения 2024. URL: https://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=LAW&n=489415#utm_campaign=med&utm_source=consultant&utm_medium=email&utm_content=body (дата обращения 25.01.2025)
  3. Соколов А.Ю., Скиба Я.Б., Любашина О.А. Нейрофизиологические и сосудистые механизмы действия серотонинергических средств для купирования приступа мигрени // Успехи физиол. наук. 2023. Т. 54. № 3. С. 53–76. https://doi.org/10.31857/S0301179823030050
  4. Alsaadi T., Kayed D.M., Al-Madani A. et al. Consensus-Based Recommendations on the Use of CGRP-Based Therapies for Migraine Prevention in the UAE // Neurol. Ther. 2023. V. 12. № 6. P. 1845–1865. https://doi.org/10.1007/s40120-023-00550-0
  5. Ashina M., Hansen J.M., Do T.P. et al. Migraine and the trigeminovascular system-40 years and counting // Lancet Neurol. 2019. V. 18. P. 795–804. https://doi.org/10.1016/S1474-4422(19)30185-1
  6. Ashina H., Schytz H.W., Ashina M. CGRP in Human Models of Migraine // Handb. Exp. Pharmacol. 2019. V. 255. P. 109–120. https://doi.org/10.1007/164_2018_128
  7. Basedau H., Peng K.P., Schellong M., May A. Double-blind, randomized, placebo-controlled study to evaluate erenumab-specific central effects: an fMRI study // J. Headache Pain. 2024. V. 25. P. 5. https://doi.org/10.1186/s10194-023-01709-8
  8. Basedau H., Sturm L.M., Mehnert J. et al. Migraine monoclonal antibodies against CGRP change brain activity depending on ligand or receptor target – an fMRI study // Elife. 2022. V. 11. e77146. https://doi.org/10.7554/eLife.77146
  9. Benedicter N., Messlinger K., Vogler B. et al. Semi-Automated Recording of Facial Sensitivity in Rat Demonstrates Antinociceptive Effects of the Anti-CGRP Antibody Fremanezumab // Neurol. Int. 2023. V. 15. №2. P. 622–637. https://doi.org/10.3390/neurolint15020039
  10. Benedicter N., Vogler B., Kuhn A. et al. Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception-Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab // Cells. 2024. V. 13. №7. P. 572. https://doi.org/10.3390/cells13070572
  11. Biscetti L., Cresta E., Cupini L.M., Calabresi P., Sarchielli P. The putative role of neuroinflam-mation in the complex pathophysiology of migraine: From bench to bedside // Neurobiol. Dis. 2023. V. 180. P. 106072. https://doi.org/10.1016/j.nbd.2023.106072
  12. Braca S., Miele A., Stornaiuolo A. et al. Are anti-calcitonin gene-related peptide monoclonal antibodies effective in treating migraine aura? A pilot prospective observational cohort study // Neurol. Sci. 2024. V. 45. P. 1655–1660. https://doi.org/10.1007/s10072-023-07241-6
  13. Caronna E., Alpuente A., Torres-Ferrus M., Pozo-Rosich P. CGRP monoclonal antibodies and CGRP receptor antagonists (Gepants) in migraine prevention // Handb. Clin. Neurol. 2024. V. 199. P. 107–124. https://doi.org/10.1016/B978-0-12-823357-3.00024-0
  14. Carter S.C., Cucchiara B., Reehal N. et al. Effect of CGRP inhibitors on interictal cerebral hemodynamics in individuals with migraine // Front. Neurol. 2024. V. 15. P. 1399792. https://doi.org/10.3389/fneur.2024.1399792
  15. Casillo F., Sebastianelli G., Di Renzo A. et al. The monoclonal CGRP-receptor blocking antibody erenumab has different effects on brainstem and cortical sensory-evoked responses // Cephalalgia. 2022. V. 42. P. 1236–1245. https://doi.org/10.1177/03331024221103811
  16. Charbit A.R., Akerman S., Holland P.R., Goadsby P.J. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohisto-chemical study // J. Neurosci. 2009. V. 29. P. 12532–41. https://doi.org/10.1523/JNEUROSCI.2887-09.2009
  17. Charles A.C., Digre K.B., Goadsby P.J. et al. Calcitonin gene-related peptide-targeting therapies are a first-line option for the prevention of migraine: An American Headache Society position statement update. Headache. 2024. V. 64. P. 333–341. https://doi.org/10.1111/head.14692
  18. Chen S.T., Wu J.W. A new era for migraine: The role of calcitonin gene-related peptide in the trigeminovascular system // Prog. Brain Res. 2020. V. 255. P. 123–142. https://doi.org/10.1016/bs.pbr.2020.05.012
  19. Close L.N., Eftekhari S., Wang M., Charles A.C., Russo A.F. Cortical spreading depression as a site of origin for migraine: Role of CGRP // Cephalalgia. 2019. V. 39. P. 428–434. https://doi.org/10.1177/0333102418774299
  20. Cottier K.E., Galloway E.A., Calabrese E.C. et al. Loss of Blood-Brain Barrier Integrity in a KCl-Induced Model of Episodic Headache Enhances CNS Drug Delivery // eNeuro. 2018. V. 5. ENEURO.0116-18.2018. https://doi.org/ 10.1523/ENEURO.0116-18.2018
  21. Cottrell G.S. CGRP Receptor Signalling Pathways // Handb. Exp. Pharmacol. 2019. V. 255. P. 37–64. https://doi.org/10.1007/164_2018_130
  22. Covasala O., Stirn S.L., Albrecht S., De Col R., Messlinger K. Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity // J. Neurophysiol. 2012. V. 108. P. 431–440. https://doi.org/10.1152/jn.00167.2011
  23. Cresta E., Bellotti A., Rinaldi G., Corbelli I., Sarchielli P. Effect of anti-CGRP-targeted therapy on migraine aura: Results of an observational case series study // CNS Neurosci. Ther. 2024. V. 30. e14595. https://doi.org/10.1111/cns.14595
  24. Dalkara T., Kaya Z., Erdener Ş.E. Unraveling the interplay of neuroinflammatory signaling between parenchymal and meningeal cells in migraine headache // J. Headache Pain. 2024. V. 25. P. 124. https://doi.org/10.1186/s10194-024-01827-x
  25. Danno D., Imai N., Kitamura S. et al. Efficacy of galcanezumab in migraine central sensitization. Sci. Rep. 2024. V. 14. P. 21824. https://doi.org/10.1038/s41598-024-72282-6
  26. De Logu F., Nassini R., Landini L., Geppetti P. Pathways of CGRP Release from Primary Sensory Neurons // Handb. Exp. Pharmacol. 2019. V. 255. P. 65–84. https://doi.org/10.1007/164_2018_145
  27. De Matteis E., Guglielmetti M., Ornello R. et al. Targeting CGRP for migraine treatment: Mechanisms, antibodies, small molecules, perspectives // Expert Rev. Neurother. 2020. V. 20. P. 627–641. https://doi.org/10.1080/14737175.2020.1772758
  28. de Vries T., Rubio-Beltrán E., van den Bogaerdt A. et al. Pharmacology of erenumab in human isolated coronary and meningeal arteries: Additional effect of gepants on top of a maximum effect of erenumab // Br. J. Pharmacol. 2024. V. 181. P. 1720–1733. https://doi.org/10.1111/bph.16322
  29. Diener H.C., RPR100893 Study Group. RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks // Cephalalgia. 2003. V. 23. P. 183–185. https://doi.org/10.1046/j.1468-2982.2003.00496.x
  30. Dux M., Vogler B., Kuhn A. et al. The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow // Cells. 2022. V. 28. P. 1768. https://doi.org/10.3390/cells11111768
  31. Edvinsson J.C., Reducha P.V., Sheykhzade M. et al. Neurokinins and their receptors in the rat trigeminal system: Differential localization and release with implications for migraine pain // Mol. Pain. 2021. V. 17. P. 17448069211059400. https://doi.org/10.1177/17448069211059400
  32. Edvinsson J.C.A., Haanes K.A., Edvinsson L. Neuropeptides and the Nodes of Ranvier in Cranial Headaches. Front. Physiol. 2022. V. 12. P. 820037. https://doi.org/10.3389/fphys.2021.820037
  33. Edvinsson L., Warfvinge K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia. 2019. V. 39. P. 366–373. https://doi.org/10.1177/0333102417736900
  34. Edvinsson L., Uddman R. Neurobiology in primary headaches // Brain Res. Brain Res. Rev. 2005. V. 48. P. 438–456. https://doi.org/10.1016/j.brainresrev.2004.09.007
  35. Edvinsson L. The CGRP Pathway in Migraine as a Viable Target for Therapies // Headache. 2018. V. 58. P. 33–47. https://doi.org/10.1111/head.13305
  36. Fischer M.J., Koulchitsky S., Messlinger K. The nonpeptide calcitonin gene-related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus // J. Neurosci. 2005. V. 25. P. 5877–5883. https://doi.org/10.1523/JNEUROSCI.0869-05.2005
  37. Fischer M.J.M., Schmidt J., Koulchitsky S. et al. Effect of a calcitonin gene-related peptide-binding L-RNA aptamer on neuronal activity in the rat spinal trigeminal nucleus // J. Headache Pain. 2018. V. 19. P. 3. https://doi.org/10.1186/s10194-018-0832-8
  38. Friedrich N., Németh K., Tanner M. et al. Anti-CGRP antibody galcanezumab modifies the function of the trigeminovascular nocisensor complex in the rat // J. Headache Pain. 2024. V. 25. P. 9. https://doi.org/10.1186/s10194-024-01717-2
  39. Frimpong-Manson K., Ortiz Y.T., McMahon L.R., Wilkerson J.L. Advances in understanding migraine pathophysiology: a bench to bedside review of research insights and therapeutics // Front. Mol. Neurosci. 2024. V. 17. P. 1355281. https://doi.org/10.3389/fnmol.2024.1355281
  40. Goadsby P.J., Holland P.R., Martins-Oliveira M. et al. Pathophysiology of Migraine: A Disorder of Sensory Processing // Physiol. Rev. 2017. V. 97. P. 553–622. https://doi.org/10.1152/physrev.00034.2015
  41. Goldstein D.J., Offen W.W., Klein E.G. et al. Lanepitant, an NK-1 antagonist, in migraine prevention // Cephalalgia. 2001. V. 21. P. 102–106. https://doi.org/10.1046/j.1468-2982.2001.00161.x
  42. González-Hernández A., Marichal-Cancino B.A., García-Boll E., Villalón C.M. The locus of Action of CGRPergic Monoclonal Antibodies Against Migraine: Peripheral Over Central Mechanisms // CNS Neurol. Disord. Drug Targets. 2020. V. 19. P. 344–359. https://doi.org/10.2174/1871527319666200618144637
  43. González-Hernández A., Villalón C.M. The influence of pharmacodynamics and pharmacokinetics on the antimigraine efficacy and safety of novel anti-CGRPergic pharmacotherapies: A narrative review // Expert Opin. Drug Metab. Toxicol. 2025. V. 21. P. 41–52. https://doi.org/10.1080/17425255.2024.2409253
  44. Grell A.S., Haanes K.A., Johansson S.E., Edvinsson L., Sams A. Fremanezumab inhibits vasodilatory effects of CGRP and capsaicin in rat cerebral artery – Potential role in conditions of severe vasoconstriction // Eur. J. Pharmacol. 2019. V. 864. P. 172726. https://doi.org/10.1016/j.ejphar.2019.172726
  45. Guo S., Vollesen A.L.H., Olesen J., Ashina M. Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain. 2016. V. 157. P. 2773–2781. https://doi.org/10.1097/j.pain.0000000000000702
  46. Haanes K.A., Edvinsson L. Pathophysiological Mechanisms in Migraine and the Identification of New Therapeutic Targets. CNS Drugs. 2019. V. 33. P. 525–537. https://doi.org/10.1007/s40263-019-00630-6
  47. Holland P.R., Saengjaroentham C., Vila-Pueyo M. The role of the brainstem in migraine: Potential brainstem effects of CGRP and CGRP receptor activation in animal models. Cephalalgia. 2019. V. 39. P. 390–402. https://doi.org/ 10.1177/0333102418756863
  48. Huang Y., Brodda-Jansen G., Lundeberg T., Yu L.C. Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: An effect attenuated by naloxone. Brain Res. 2000. V. 873. P. 54–59. https://doi.org/10.1016/s0006-8993(00)02473-2
  49. Iyengar S., Johnson K.W., Ossipov M.H., Aurora S.K. CGRP and the Trigeminal System in Migraine. Headache. 2019. V. 59. P. 659–681. https://doi.org/ 10.1111/head.13529
  50. Johnson K.W., Morin S.M., Wroblewski V.J., Johnson M.P. Peripheral and central nervous system distribution of the CGRP neutralizing antibody [125I] galcanezumab in male rats. Cephalalgia. 2019. V. 39. P. 1241–1248. https://doi.org/10.1177/0333102419844711
  51. Kageneck C., Nixdorf-Bergweiler B.E., Messlinger K., Fischer M.J. Release of CGRP from mouse brainstem slices indicates central inhibitory effect of triptans and kynurenate // J. Headache Pain. 2014. V. 15. P. 7. https://doi.org/10.1186/1129-2377-15-7
  52. Karsan N., Gosalia H., Goadsby P.J. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides // Int. J. Mol. Sci. 2023. V. 24. P. 11993. https://doi.org/10.3390/ijms241511993
  53. Kim Y.S., Kim M., Choi S.H. et al. Altered Vascular Permeability in Migraine-associated Brain Regions: Evaluation with Dynamic Contrast-enhanced MRI // Radiology. 2019. V. 292. P. 713–720. https://doi.org/10.1148/radiol.2019182566
  54. Kopruszinski C.M., Xie J.Y., Eyde N.M. et al. Prevention of stress- or nitric oxide donor-induced medication overuse headache by a calcitonin gene-related peptide antibody in rodents // Cephalalgia. 2017. V. 37. P. 560–570. https://doi.org/10.1177/0333102416650702
  55. Koulchitsky S., Fischer M.J., Messlinger K. Calcitonin gene-related peptide receptor inhibition reduces neuronal activity induced by prolonged increase in nitric oxide in the rat spinal trigeminal nucleus // Cephalalgia. 2009. V. 29. P. 408–417. https://doi.org/10.1111/j.1468-2982.2008.01745.x
  56. Labastida-Ramírez A., Caronna E., Gollion C. et al. Mode and site of action of therapies targeting CGRP signaling // J. Headache Pain. 2023. V. 24. P. 125. https://doi.org/10.1186/s10194-023-01644-8
  57. Lassen L.H., Jacobsen V.B., Haderslev P.A. et al. Involvement of calcitonin gene-related peptide in migraine: Regional cerebral blood flow and blood flow velocity in migraine patients // J. Headache Pain. 2008. V. 9. P. 151–157. https://doi.org/10.1007/s10194-008-0036-8
  58. Lennerz J.K., Rühle V., Ceppa E.P. et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution // J. Comp. Neurol. 2008. V. 507. P. 1277–1299. https://doi.org/10.1002/cne.21607
  59. Levy D., Burstein R., Strassman A.M. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: Implications for the pathophysiology of migraine // Ann. Neurol. 2005. V. 58. P. 698–705. https://doi.org/10.1002/ana.20619
  60. Malhotra R. Understanding migraine: Potential role of neurogenic inflammation // Ann. Indian Acad. Neurol. 2016. V. 19. P. 175–182. https://doi.org/10.4103/0972-2327.182302
  61. Manganotti P., Deodato M., D'Acunto L. et al. Effects of Anti-CGRP Monoclonal Antibodies on Neurophysiological and Clinical Outcomes: A Combined Transcranial Magnetic Stimulation and Algometer Study // Neurol. Int. 2024. V. 16. P. 673–688. https://doi.org/10.3390/neurolint16040051
  62. Mason B.N., Kaiser E.A., Kuburas A. et al. Induction of Migraine-Like Photophobic Behavior in Mice by Both Peripheral and Central CGRP Mechanisms // J. Neurosci. 2017. V. 37. P. 204–216. https://doi.org/10.1523/JNEUROSCI.2967-16.2016
  63. Medrea I., Cooper P., Langman M. et al. Updated Canadian Headache Society Migraine Prevention Guideline with Systematic Review and Meta-analysis // Can. J. Neurol. Sci. 2024. V. 7. P. 1–23. https://doi.org/10.1017/cjn.2024.285
  64. Melo-Carrillo A., Noseda R., Nir R.R. et al. Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody // J. Neurosci. 2017. V. 37. P. 7149–7163. https://doi.org/10.1523/JNEUROSCI.0576-17.2017
  65. Melo-Carrillo A., Schain A.J., Stratton J., Strassman A.M., Burstein R. Fremanezumab and its isotype slow propagation rate and shorten cortical recovery period but do not prevent occurrence of cortical spreading depression in rats with compromised blood-brain barrier // Pain. 2020. V. 161. P. 1037–1043. https://doi.org/10.1097/j.pain.0000000000001791
  66. Melo-Carrillo A., Strassman A.M., Nir R.R. et al. Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ) But Not Unmyelinated (C) Meningeal Nociceptors // J. Neurosci. 2017. V. 37. P. 10587–10596. https://doi.org/10.1523/JNEUROSCI.2211-17.2017
  67. Messlinger K., Russo A.F. Current understanding of trigeminal ganglion structure and function in headache // Cephalalgia. 2019. V. 39. P. 1661–1674. https://doi.org/10.1177/0333102418786261
  68. Messlinger K. The big CGRP flood – sources, sinks and signalling sites in the trigeminovascular system // J. Headache Pain. 2018. V. 19. P. 22. https://doi.org/ 10.1186/s10194-018-0848-0
  69. Mi X., Ran L., Chen L., Qin G. Recurrent Headache Increases Blood-Brain Barrier Permeability and VEGF Expression in Rats // Pain Physician. 2018. V. 21. E633–E642.
  70. Mitsikostas D.D., Sanchez del Rio M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine // Brain Res. Brain Res. Rev. 2001. V. 35. P. 20–35. https://doi.org/10.1016/s0165-0173(00)00048-5
  71. Moisset X., Demarquay G., de Gaalon S. et al. Migraine treatment: Position paper of the French Headache Society // Rev. Neurol. (Paris). 2024. V. 180. P. 1087–1099. https://doi.org/10.1016/j.neurol.2024.09.008
  72. Muddam M.R., Obajeun O.A., Abaza A. et al. Efficacy and Safety of Anti-calcitonin Gene-Related Peptide (CGRP) Monoclonal Antibodies in Preventing Migraines: A Systematic Review // Cureus. 2023. V. 15. e45560. https://doi.org/10.7759/cureus.45560
  73. Negro A., Martelletti P. Gepants for the treatment of migraine // Expert Opin. Investig. Drugs. 2019. V. 28. P. 555–567. https://doi.org/10.1080/13543784.2019.1618830
  74. Noseda R., Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain // Pain. 2013. V. 154. Suppl 1:10.1016/j.pain.2013.07.021. https://doi.org/10.1016/j.pain.2013.07.021
  75. Noseda R., Schain A.J., Melo-Carrillo A. et al. Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier // Cephalalgia. 2020. V. 40. P. 229–240. https://doi.org/10.1177/0333102419896760
  76. Ohlsson L., Haanes K.A., Kronvall E. et al. Erenumab (AMG 334), a monoclonal antagonist antibody against the canonical CGRP receptor, does not impair vasodilatory or contractile responses to other vasoactive agents in human isolated cranial arteries // Cephalalgia. 2019. V. 39. P. 1745–1752. https://doi.org/10.1177/0333102419867282
  77. Ohlsson L., Kronvall E., Stratton J., Edvinsson L. Fremanezumab blocks CGRP induced dilatation in human cerebral, middle meningeal and abdominal arteries // J. Headache Pain. 2018. V. 19. P. 66. https://doi.org/10.1186/s10194-018-0905-8
  78. Olesen J. Provocation of attacks to discover migraine signaling mechanisms and new drug targets: early history and future perspectives – a narrative review // J. Headache Pain. 2024. V. 25. P. 105. https://doi.org/10.1186/s10194-024-01796-1
  79. Orlando B., Egeo G., Aurilia C., Fiorentini G., Barbanti P. Calcitonin Gene-Related Peptide Monoclonal Antibodies: Key Lessons from Real-World Evidence // Brain Sci. 2024. V. 14. P. 948. https://doi.org/10.3390/brainsci14090948
  80. Pozo-Rosich P., Storer R.J., Charbit A.R., Goadsby P.J. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons // Cephalalgia. 2015. V. 35. P. 1298–1307. https://doi.org/10.1177/0333102415576723
  81. Raggi A., Leonardi M., Arruda M. et al. Hallmarks of primary headache: Part 1 – migraine // J. Headache Pain. 2024. V. 25. P. 189. https://doi.org/10.1186/s10194-024-01889-x
  82. Reducha P.V., Bömers J.P., Edvinsson L., Haanes K.A. Rodent behavior following a dural inflammation model with anti-CGRP migraine medication treatment // Front. Neurol. 2023. V. 14. P. 1082176. https://doi.org/10.3389/fneur.2023.1082176
  83. Reducha P.V., Edvinsson L., Haanes K.A. Could Experimental Inflammation Provide Better Understanding of Migraines? // Cells. 2022. V. 11. P. 2444. https://doi.org/10.3390/cells11152444
  84. Rubio-Beltrán E., Labastida-Ramírez A., Haanes K.A. et al. Characterisation of vasodilatory responses in the presence of the CGRP receptor antibody erenumab in human isolated arteries // Cephalalgia. 2019. V. 39. P. 1735–1744. https://doi.org/10.1177/0333102419863027
  85. Russo A.F., Hay D.L. CGRP physiology, pharmacology, and therapeutic targets: Migrai-ne and beyond // Physiol. Rev. 2023. V. 103. P. 1565–1644. https://doi.org/10.1152/physrev.00059.2021
  86. Russo A.F. CGRP-based Migraine Therapeutics: How Might They Work, Why So Safe, and What Next? // ACS Pharmacol. Transl. Sci. 2019. V. 2. P. 2–8. https://doi.org/10.1021/acsptsci.8b00036
  87. Sacco S., Amin F.M., Ashina M. et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update // J. Headache Pain. 2022. V. 23. P. 67. https://doi.org/10.1186/s10194-022-01431-x
  88. Sakai Y., Dobson C., Diksic M., Aubé M., Hamel E. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis // Neurology. 2008. V. 70. P. 431–439. https://doi.org/10.1212/01.wnl.0000299095.65331.6f
  89. Schain A.J., Melo-Carrillo A., Stratton J., Strassman A.M., Burstein R. CSD-Induced Arterial Dilatation and Plasma Protein Extravasation Are Unaffected by Fremanezumab: Implications for CGRP's Role in Migraine with Aura // J. Neurosci. 2019. V. 39. P. 6001–6011. https://doi.org/10.1523/JNEUROSCI.0232-19.2019
  90. Shibata Y. Anti-Calcitonin Gene-Related Peptide Monoclonal Antibody Is Effective for Preventing Migraine Aura Without Headache // Neurol. Int. 2024. V. 16. P. 1279–1284. https://doi.org/10.3390/neurolint16060097
  91. Sirilertmekasakul C., Panto A., Lekhalawan P. et al. The transition of medication overuse status by acute medication categories in episodic or chronic migraine patients to non-overuse status after receiving anti-CGRP monoclonal antibodies: A systematic review and meta-analysis of phase 3 randomized control trial // Neurol. Sci. 2024. V. 45. P. 4451–4462. https://doi.org/10.1007/s10072-024-07496-7
  92. Sixt M.L., Messlinger K., Fischer M.J. Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus // Brain. 2009. V. 132. P. 3134–3141. https://doi.org/10.1093/brain/awp168
  93. Sokolov A.Y., Osipchuk A.V., Skiba I.B., Amelin A.V. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis // Neurochem. J. 2022. V. 16. P. 31–38. https://doi.org/10.1134/S1819712422010123
  94. Song Y., Zhao S., Peng P. et al. Neuron-glia crosstalk and inflammatory mediators in migraine pathophysiology // Neuroscience. 2024. V. 560. P. 381–396. https://doi.org/10.1016/j.neuroscience.2024.10.006
  95. Spekker E., Tanaka M., Szabó Á., Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research // Biomedicines. 2021. V. 10. P. 76. https://doi.org/10.3390/biomedicines10010076
  96. Storer R.J., Akerman S., Goadsby P.J. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat // Br. J. Pharmacol. 2004. V. 142. P. 1171–1181. https://doi.org/10.1038/sj.bjp.0705807
  97. Summ O., Charbit A.R., Andreou A.P., Goadsby P.J. Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus // Brain. 2010. V. 133. P. 2540–2548. https://doi.org/10.1093/brain/awq224. PMID: 20802202.
  98. Tana C., Cipollone F., Giamberardino M.A., Martelletti P. New drugs targeting calcitonin gene-related peptide for the management of migraines // Expert Opin. Emerg. Drugs. 2023. V. 28. P. 233–240. https://doi.org/10.1080/14728214.2023.2288334
  99. Tanei T., Fuse Y., Maesawa S. et al. Real-world clinical results of CGRP monoclonal antibody treatment for medication overuse headache of migraine without abrupt drug discontinuation and no hospitalization // Heliyon. 2024. V. 10. e40190. https://doi.org/10.1016/j.heliyon.2024.e40190
  100. Tfelt-Hansen P.C. Does sumatriptan cross the blood-brain barrier in animals and man? // J. Headache Pain. 2010. V. 11. P. 5–12. https://doi.org/10.1007/s10194-009-0170-y
  101. Triller P., Raffaelli B. Anti-CGRP basierte Migränemedikamente – eine Übersicht der Studienlage [Anti-CGRP-based Migraine Medi-cations: A Comprehensive Overview] // Fortschr. Neurol. Psychiatr. 2024. V. 92. P. 277–282. German. https://doi.org/10.1055/a-2276-2239
  102. Vogler B., Kuhn A., Mackenzie K.D. et al. The Anti-Calcitonin Gene-Related Peptide (Anti-CGRP) Antibody Fremanezumab Reduces Trigeminal Neurons Immunoreactive to CGRP and CGRP Receptor Components in Rats // Int. J. Mol. Sci. 2023. V. 24. P. 13471. https://doi.org/10.3390/ijms241713471
  103. Wattiez A.S., Sowers L.P., Russo A.F. Calcitonin gene-related peptide (CGRP): Role in migraine pathophysiology and therapeutic targeting // Expert Opin. Ther. Targets. 2020. V. 24. P. 91–100. https://doi.org/10.1080/14728222.2020.1724285
  104. Yamanaka G., Suzuki S., Morishita N. et al. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine // Int. J. Mol. Sci. 2021. V. 22. P. 8929. https://doi.org/10.3390/ijms22168929
  105. Yu L.C., Weng X.H., Wang J.W., Lundeberg T. Involvement of calcitonin gene-related peptide and its receptor in anti-nociception in the periaqueductal grey of rats // Neurosci. Lett. 2003. V. 349. P. 1–4. https://doi.org/10.1016/s0304-3940(03)00273-8
  106. Zhang Y., Zhang Y., Tian K. et al. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine // J. Headache Pain. 2020. V. 21. P. 72. https://doi.org/10.1186/s10194-020-01145-y
  107. Ziegeler C., Mehnert J., Asmussen K., May A. Central effects of erenumab in migraine patients: An event-related functional imaging study // Neurology. 2020. V. 95. e2794–e2802. https://doi.org/10.1212/WNL.0000000000010740

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025