The role of m⁶A-rna methylation in bladder cancer development, progression, and treatment response
- Authors: Sinyagovskaya T.V.1, Li Y.A.1, Vinchevskaya-Khmelnitskaya N.S.1, Agabalaeva A.M.1, Ponomareva N.I.1, Brezgin S.A.1, Goptar I.A.1, Chulanov V.P.1,2, Dymov A.M.1, Vinarov A.Z.1, Kostyushev D.S.3, Kostyusheva A.P.1
-
Affiliations:
- First Moscow State Medical University (Sechenov University)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- First Moscow State Medical University (Sechenov University) Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Issue: Vol 90, No 6 (2025)
- Pages: 695 – 719
- Section: Articles
- URL: https://consilium.orscience.ru/0320-9725/article/view/688038
- DOI: https://doi.org/10.31857/S0320972525060027
- EDN: https://elibrary.ru/JCNAXA
- ID: 688038
Cite item
Abstract
Bladder cancer (BCa) remains a significant clinical challenge, characterized by high recurrence rates and variable responses to immunotherapy and chemotherapy. Recent studies have highlighted the role of N6-methyladenosine (m⁶A) RNA modification in regulating various cellular processes, including tumor progression and drug resistance. This review examines the impact of m⁶A methylation on BCa pathogenesis, with a particular focus on the role of m⁶A pathway factors and m⁶A-modified RNAs in tumorigenesis, proliferation, invasion and migration processes. Moreover, mechanisms of m⁶A-mediated chemotherapeutic resistance in BCa cells are evaluated, including single nucleotide polymorphisms in m⁶A-associated patterns. Significant advances in high-throughput analysis of m⁶A methylation enabled development of novel m⁶A-based biomarkers for risk assessment and early diagnosis of BCa, prediction of cancer relapse, and treatment response. In this manuscript, the prospects of m⁶A-based molecular diagnostics in BCa are outlined.
Keywords
Full Text

About the authors
T. V. Sinyagovskaya
First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: tsv.relentless@gmail.com
Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
Russian Federation, 119991 MoscowYu. A. Li
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Institute for Urology and Reproductive Health
Russian Federation, 119991 MoscowN. S. Vinchevskaya-Khmelnitskaya
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Institute for Urology and Reproductive Health
Russian Federation, 119991 MoscowA. M. Agabalaeva
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Institute for Urology and Reproductive Health
Russian Federation, 119991 MoscowN. I. Ponomareva
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
Russian Federation, 119991 MoscowS. A. Brezgin
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
Russian Federation, 119991 MoscowI. A. Goptar
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
Russian Federation, 119991 MoscowV. P. Chulanov
First Moscow State Medical University (Sechenov University); Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: tsv.relentless@gmail.com
Department of Infectious Diseases
Russian Federation, 119991 Moscow; 119991 MoscowA. M. Dymov
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Institute for Urology and Reproductive Health
Russian Federation, 119991 MoscowA. Z. Vinarov
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Institute for Urology and Reproductive Health
Russian Federation, 119991 MoscowD. S. Kostyushev
First Moscow State Medical University (Sechenov University)Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: tsv.relentless@gmail.com
Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Faculty of Bioengineering and Bioinformatics
Russian Federation, 119991 Moscow; 119991 MoscowA. P. Kostyusheva
First Moscow State Medical University (Sechenov University)
Email: tsv.relentless@gmail.com
Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
Russian Federation, 119991 MoscowReferences
- Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2024) Global cancer observatory: cancer today, Int. Agency Res., URL: https://gco.iarc.who.int/ today.
- Burger, M., Catto, J. W. F., Dalbagni, G., Grossman, H. B., Herr, H., Karakiewicz, P., Kassouf, W., Kiemeney, L. A., La Vecchia, C., Shariat, S., and Lotan, Y. (2013) Epidemiology and risk factors of urothelial bladder cancer, Eur. Urol., 63, 234-241, https://doi.org/10.1016/j.eururo.2012.07.033.
- Aldousari, S., and Kassouf, W. (2010) Update on the management of non-muscle invasive bladder cancer, Can. Urol. Assoc. J., 4, 56-64, https://doi.org/10.5489/cuaj.777.
- Shalata, A. T., Shehata, M., Van Bogaert, E., Ali, K. M., Alksas, A., Mahmoud, A., El-Gendy, E. M., Mohamed, M. A., Giridharan, G. A., Contractor, S., and El-Baz, A. (2022) Predicting recurrence of non-muscle-invasive bladder cancer: current techniques and future trends, Cancers, 14, 5019, https://doi.org/10.3390/cancers14205019.
- Jeong, S., Han, J. H., Jeong, C. W., Kim, H. H., Kwak, C., Yuk, H. D., and Ku, J. H. (2022) Clinical determinants of recurrence in pTa bladder cancer following transurethral resection of bladder tumor, BMC Cancer, 22, 631, https://doi.org/10.1186/s12885-022-09733-8.
- D’Andrea, D., Abufaraj, M., Susani, M., Ristl, R., Foerster, B., Kimura, S., Mari, A., Soria, F., Briganti, A., Karakiewicz, P. I., Gust, K. M., Rouprêt, M., and Shariat, S. F. (2018) Accurate prediction of progression to muscle-invasive disease in patients with pT1G3 bladder cancer: a clinical decision-making tool, Urol. Oncol., 36, 239.e1-239.e7, https://doi.org/10.1016/j.urolonc.2018.01.018.
- Lorenz, D. A., Sathe, S., Einstein, J. M., and Yeo, G. W. (2020) Direct RNA sequencing enables m⁶A detection in endogenous transcript isoforms at base-specific resolution, RNA, 26, 19-28, https://doi.org/10.1261/rna. 072785.119.
- Shu, L., Huang, X., Cheng, X., and Li, X. (2021) Emerging roles of N6-methyladenosine modification in neurodevelopment and neurodegeneration, Cells, 10, 2694, https://doi.org/10.3390/cells10102694.
- Sokpor, G., Xie, Y., Nguyen, H. P., and Tuoc, T. (2021) Emerging role of m⁶A methylome in brain development: implications for neurological disorders and potential treatment, Front. Cell Dev. Biol., 9, 656849, https://doi.org/10.3389/fcell.2021.656849.
- Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D., Qiao, Y., and Tang, C. (2020) Role of m⁶A RNA methylation in cardiovascular disease (review), Int. J. Mol. Med., 46, 1958-1972, https://doi.org/10.3892/ijmm.2020.4746.
- Kumari, R., Ranjan, P., Suleiman, Z. G., Goswami, S. K., Li, J., Prasad, R., and Verma, S. K. (2022) mRNA modifications in cardiovascular biology and disease: with a focus on m⁶A modification, Cardiovasc. Res., 118, 1680-1692, https://doi.org/10.1093/cvr/cvab160.
- Williams, G. D., Gokhale, N. S., and Horner, S. M. (2019) Regulation of viral infection by the RNA modification N6-methyladenosine, Annu. Rev. Virol., 6, 235-253, https://doi.org/10.1146/annurev-virology-092818-015559.
- Li, Y., Zhang, Q., Cui, G., Zhao, F., Tian, X., Sun, B.-F., Yang, Y., and Li, W. (2020) m⁶A regulates liver metabolic disorders and hepatogenous diabetes, Genom. Proteom. Bioinform., 18, 371-383, https://doi.org/10.1016/ j.gpb.2020.06.003.
- Zhang, C., Fu, J., and Zhou, Y. (2019) A review in research progress concerning m⁶A Methylation and Immunoregulation, Front. Immunol., 10, 922, https://doi.org/10.3389/fimmu.2019.00922.
- Tan, F., Zhao, M., Xiong, F., Wang, Y., Zhang, S., Gong, Z., Li, X., He, Y., Shi, L., Wang, F., Xiang, B., Zhou, M., Li, X., Li, Y., Li, G., Zeng, Z., Xiong, W., and Guo, C. (2021) N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies, J. Exp. Clin. Cancer Res., 40, 146, https://doi.org/10.1186/s13046-021-01952-4.
- Hong, K. (2018) Emerging function of N6-methyladenosine in cancer, Oncol. Lett., 16, 5519-5524, https://doi.org/10.3892/ol.2018.9395.
- Weiner, A. B., Desai, A. S., and Meeks, J. J. (2019) Tumor location may predict adverse pathology and survival following definitive treatment for bladder cancer: a national cohort study, Eur. Urol. Oncol., 2, 304-310, https://doi.org/10.1016/j.euo.2018.08.018.
- Kassouf, W., Spiess, P. E., Brown, G. A., Liu, P., Grossman, H. B., Dinney, C. P. N., and Kamat, A. M. (2008) Prostatic urethral biopsy has limited usefulness in counseling patients regarding final urethral margin status during orthotopic neobladder reconstruction, J. Urol., 180, 164-167, https://doi.org/10.1016/j.juro.2008.03.037.
- Gontero, P., Birtle, A., Capoun, O., Compérat, E., Dominguez-Escrig, J. L., Liedberg, F., Mariappan, P., Masson-Lecomte, A., Mostafid, H. A., Pradere, B., Rai, B. P., van Rhijn, B. W. G., Seisen, T., Shariat, S. F., Soria, F., Soukup, V., Wood, R., and Xylinas, E. N. (2024) European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) – a summary of the 2024 guidelines update, Eur. Urol., 86, 531-549, https://doi.org/10.1016/j.eururo.2024.07.027.
- Flores Monar, G. V., Reynolds, T., Gordon, M., Moon, D., and Moon, C. (2023) Molecular markers for bladder cancer screening: an insight into bladder cancer and FDA-approved biomarkers, Int. J. Mol. Sci., 24, 14374, https://doi.org/10.3390/ijms241814374.
- Fan, J., Chen, B., Luo, Q., Li, J., Huang, Y., Zhu, M., Chen, Z., Li, J., Wang, J., Liu, L., Wei, Q., and Cao, D. (2024) Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer, Biomed. Pharmacother., 173, 116312, https://doi.org/10.1016/j.biopha.2024.116312.
- Hu, X., Li, G., and Wu, S. (2022) Advances in diagnosis and therapy for bladder cancer, Cancers (Basel), 14, 3181, https://doi.org/10.3390/cancers14133181.
- Batista, R., Vinagre, N., Meireles, S., Vinagre, J., Prazeres, H., Leão, R., Máximo, V., and Soares, P. (2020) Biomarkers for bladder cancer diagnosis and surveillance: a comprehensive review, Diagnostics, 10, 39, https://doi.org/10.3390/diagnostics10010039.
- Soria, F., Droller, M. J., Lotan, Y., Gontero, P., D’Andrea, D., Gust, K. M., Rouprêt, M., Babjuk, M., Palou, J., and Shariat, S. F. (2018) An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer, World J. Urol., 36, 1981-1995, https://doi.org/10.1007/s00345-018-2380-x.
- Sylvester, R. J., Oosterlinck, W., Holmang, S., Sydes, M. R., Birtle, A., Gudjonsson, S., De Nunzio, C., Okamura, K., Kaasinen, E., Solsona, E., Ali-El-Dein, B., Tatar, C. A., Inman, B. A., N’Dow, J., Oddens, J. R., and Babjuk, M. (2016) Systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa-pT1 urothelial carcinoma, Eur. Urol., 69, 231-244, https://doi.org/10.1016/j.eururo. 2015.05.050.
- Lidagoster, S., Ben-David, R., De Leon, B., and Sfakianos, J. P. (2024) BCG and alternative therapies to BCG therapy for non-muscle-invasive bladder cancer, Curr. Oncol., 31, 1063-1078, https://doi.org/10.3390/curroncol31020079.
- Oerum, S., Meynier, V., Catala, M., and Tisné, C. (2021) A comprehensive review of m⁶A/m⁶Am RNA methyltransferase structures, Nucleic Acids Res., 49, 7239-7255, https://doi.org/10.1093/nar/gkab378.
- Wang, T., Kong, S., Tao, M., and Ju, S. (2020) The potential role of RNA N6-methyladenosine in cancer progression, Mol. Cancer, 19, 88, https://doi.org/10.1186/s12943-020-01204-7.
- Qu, J., Yan, H., Hou, Y., Cao, W., Liu, Y., Zhang, E., He, J., and Cai, Z. (2022) RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential, J. Hematol. Oncol., 15, 8, https://doi.org/10.1186/s13045-022-01224-4.
- Azzam, S. K., Alsafar, H., and Sajini, A. A. (2022) FTO m⁶A demethylase in obesity and cancer: implications and underlying molecular mechanisms, Int. J. Mol. Sci., 23, 3800, https://doi.org/10.3390/ijms23073800.
- Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., Ren, B., Pan, T., and He, C. (2014) N6-methyladenosine-dependent regulation of messenger RNA stability, Nature, 505, 117-120, https://doi.org/10.1038/nature12730.
- Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, 518, 560-564, https://doi.org/10.1038/nature14234.
- Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B. S., Mesquita, A., Liu, C., Yuan, C. L., Hu, Y.-C., Hüttelmaier, S., Skibbe, J. R., Su, R., Deng, X., Dong, L., Sun, M., Li, C., Nachtergaele, S., Wang, Y., Hu, C., Ferchen, K., Greis, K. D., Jiang, X., Wei, M., Qu, L., Guan, J.-L., He, C., Yang, J., and Chen, J. (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation, Nat. Cell Biol., 20, 285-295, https://doi.org/10.1038/s41556-018-0045-z.
- Choe, J., Lin, S., Zhang, W., Liu, Q., Wang, L., Ramirez-Moya, J., Du, P., Kim, W., Tang, S., Sliz, P., Santisteban, P., George, R. E., Richards, W. G., Wong, K.-K., Locker, N., Slack, F. J., and Gregory, R. I. (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis, Nature, 561, 556-560, https://doi.org/ 10.1038/s41586-018-0538-8.
- Uddin, M. B., Wang, Z., and Yang, C. (2021) The m⁶A RNA methylation regulates oncogenic signaling pathways driving cell malignant transformation and carcinogenesis, Mol. Cancer, 20, 61, https://doi.org/10.1186/s12943-021-01356-0.
- Deng, X., Su, R., Weng, H., Huang, H., Li, Z., and Chen, J. (2018) RNA N(6)-methyladenosine modification in cancers: current status and perspectives, Cell Res., 28, 507-517, https://doi.org/10.1038/s41422-018-0034-6.
- Wang, S., Chai, P., Jia, R., and Jia, R. (2018) Novel insights on m⁶A RNA methylation in tumorigenesis: a double-edged sword, Mol. Cancer, 17, 101, https://doi.org/10.1186/s12943-018-0847-4.
- Liu, Q. (2021) Current advances in N6-methyladenosine methylation modification during bladder cancer, Front. Genet., 12, 825109, https://doi.org/10.3389/fgene.2021.825109.
- Chen, M., Nie, Z., Wen, X., Gao, Y., Cao, H., and Zhang, S. (2019) m⁶A RNA methylation regulators can contribute to malignant progression and impact the prognosis of bladder cancer, Biosci. Rep., 39, BSR20192892, https://doi.org/10.1042/BSR20192892.
- Wu, J., Wang, X., Xu, H., Tian, J., Ji, H., Zhu, J., Guo, H., and Chen, Z. (2022) Bioinformatics analysis of the correlation between m⁶A RNA methylation regulators and the immune infiltration and prognosis of bladder cancer, Ann. Transl. Med., 10, 1386, https://doi.org/10.21037/atm-22-5993.
- Shen, C., Liu, J., Wang, J., Yang, X., Niu, H., and Wang, Y. (2020) The analysis of PTPN6 for bladder cancer: an exploratory study based on TCGA, Dis. Markers, 2020, 4312629, https://doi.org/10.1155/2020/ 4312629.
- Wu, N., Sun, Y., Xue, D., and He, X. (2024) FTO promotes the progression of bladder cancer via demethylating m⁶A modifications in PTPN6 mRNA, Heliyon, 10, e34031, https://doi.org/10.1016/j.heliyon.2024.e34031.
- Tao, L., Mu, X., Chen, H., Jin, D., Zhang, R., Zhao, Y., Fan, J., Cao, M., and Zhou, Z. (2021) FTO modifies the m⁶A level of MALAT and promotes bladder cancer progression, Clin. Transl. Med., 11, e310, https://doi.org/ 10.1002/ctm2.310.
- Zhou, G., Yan, K., Liu, J., Gao, L., Jiang, X., and Fan, Y. (2021) FTO promotes tumour proliferation in bladder cancer via the FTO/miR-576/CDK6 axis in an m⁶A-dependent manner, Cell Death Discov., 7, 329, https://doi.org/10.1038/s41420-021-00762-z.
- Huang, W., Zhu, L., Huang, H., Li, Y., Wang, G., and Zhang, C. (2023) IGF2BP3 overexpression predicts poor prognosis and correlates with immune infiltration in bladder cancer, BMC Cancer, 23, 116, https://doi.org/10.1186/s12885-022-10353-5.
- Fu, D., Shi, X., Yi, X., Wu, D., He, H., Zhou, W., and Cheng, W. (2024) m⁶A reader IGF2BP2 promotes M2 macrophage polarization and malignant biological behavior of bladder cancer by stabilizing NRP1 mRNA expression, BMC Urol., 24, 147, https://doi.org/10.1186/s12894-024-01534-4.
- Lv, L., Wei, Q., Zhang, J., Dong, Y., Shan, Z., Chang, N., Zhao, Y., Bian, P., and Yi, Q. (2024) IGF2BP3 prevent HMGB1 mRNA decay in bladder cancer and development, Cell. Mol. Biol. Lett., 29, 39, https://doi.org/10.1186/s11658-024-00545-1.
- Watt, F. M. (2002) Role of integrins in regulating epidermal adhesion, growth and differentiation, EMBO J., 21, 3919-3926, https://doi.org/10.1093/emboj/cdf399.
- Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines, Cell, 110, 673-687, https://doi.org/10.1016/S0092-8674(02)00971-6.
- Stewart, R. L., West, D., Wang, C., Weiss, H. L., Gal, T., Durbin, E. B., O’Connor, W., Chen, M., and O’Connor, K. L. (2016) Elevated integrin α6β4 expression is associated with venous invasion and decreased overall survival in non-small cell lung cancer, Hum. Pathol., 54, 174-183, https://doi.org/10.1016/j.humpath. 2016.04.003.
- Ammothumkandy, A., Maliekal, T. T., Bose, M. V., Rajkumar, T., Shirley, S., Thejaswini, B., Giri, V. G., and Krishna, S. (2016) CD66 and CD49f expressing cells are associated with distinct neoplastic phenotypes and progression in human cervical cancer, Eur. J. Cancer, 60, 166-178, https://doi.org/10.1016/j.ejca. 2016.03.072.
- Duan, X., Li, H., Wang, M., Ju, S., Li, F., Chen, P., Lu, H., Han, X., and Ren, J. (2021) PSMC2/ITGA6 axis plays critical role in the development and progression of hepatocellular carcinoma, Cell Death Discov., 7, 217, https://doi.org/10.1038/s41420-021-00585-y.
- Wei, L., Yin, F., Chen, C., and Li, L. (2019) Expression of integrin α-6 is associated with multi drug resistance and prognosis in ovarian cancer, Oncol. Lett., 17, 3974-3980, https://doi.org/10.3892/ol.2019.10056.
- Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E., and Morishita, K. (2012) The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1(high) leukemia, PLoS One, 7, e30706, https://doi.org/10.1371/ journal.pone.0030706.
- Jin, H., Ying, X., Que, B., Wang, X., Chao, Y., Zhang, H., Yuan, Z., Qi, D., Lin, S., Min, W., Yang, M., and Ji, W. (2019) N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer, EBioMedicine, 47, 195-207, https://doi.org/10.1016/j.ebiom.2019.07.068.
- Ying, X., Huang, Y., Liu, B., Hu, W. Y., Ji, D., Chen, C., Zhang, H., Liang, Y., Lv, Y., and Ji, W. (2024) Targeted m⁶A demethylation of ITGA6 mRNA by a multisite dCasRx-m⁶A editor inhibits bladder cancer development, J. Adv. Res., 56, 57-68, https://doi.org/10.1016/j.jare.2023.03.010.
- Law, M. E., Ferreira, R. B., Davis, B. J., Higgins, P. J., Kim, J.-S., Castellano, R. K., Chen, S., Luesch, H., and Law, B. K. (2016) CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment, Breast Cancer Res., 18, 80, https://doi.org/10.1186/s13058-016-0741-1.
- Scherl-Mostageer, M., Sommergruber, W., Abseher, R., Hauptmann, R., Ambros, P., and Schweifer, N. (2001) Identification of a novel gene, CDCP1, overexpressed in human colorectal cancer, Oncogene, 20, 4402-4408, https://doi.org/10.1038/sj.onc.1204566.
- Perry, S. E., Robinson, P., Melcher, A., Quirke, P., Bühring, H.-J., Cook, G. P., and Blair, G. E. (2007) Expression of the CUB domain containing protein 1 (CDCP1) gene in colorectal tumour cells, FEBS Lett., 581, 1137-1142, https://doi.org/10.1016/j.febslet.2007.02.025.
- Ikeda, J., Oda, T., Inoue, M., Uekita, T., Sakai, R., Okumura, M., Aozasa, K., and Morii, E. (2009) Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung, Cancer Sci., 100, 429-433, https://doi.org/10.1111/j.1349-7006.2008.01066.x.
- Awakura, Y., Nakamura, E., Takahashi, T., Kotani, H., Mikami, Y., Kadowaki, T., Myoumoto, A., Akiyama, H., Ito, N., Kamoto, T., Manabe, T., Nobumasa, H., Tsujimoto, G., and Ogawa, O. (2008) Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma, J. Cancer Res. Clin. Oncol., 134, 1363-1369, https://doi.org/10.1007/s00432-008-0412-4.
- Casar, B., Rimann, I., Kato, H., Shattil, S. J., Quigley, J. P., and Deryugina, E. I. (2014) In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling, Oncogene, 33, 255-268, https://doi.org/10.1038/onc.2012.547.
- Yang, F., Jin, H., Que, B., Chao, Y., Zhang, H., Ying, X., Zhou, Z., Yuan, Z., Su, J., Wu, B., Zhang, W., Qi, D., Chen, D., Min, W., Lin, S., and Ji, W. (2019) Dynamic m⁶A mRNA methylation reveals the role of METTL3-m⁶A-CDCP1 signaling axis in chemical carcinogenesis, Oncogene, 38, 4755-4772, https://doi.org/10.1038/s41388-019-0755-0.
- Ying, X., Jiang, X., Zhang, H., Liu, B., Huang, Y., Zhu, X., Qi, D., Yuan, G., Luo, J., and Ji, W. (2020) Programmable N6-methyladenosine modification of CDCP1 mRNA by RCas9-methyltransferase like 3 conjugates promotes bladder cancer development, Mol. Cancer, 19, 169, https://doi.org/10.1186/s12943-020-01289-0.
- Chen, X., Xu, W., Pan, J., Yang, H., Li, Y., Chen, X., Sun, Y., Liu, Q., and Qiu, S. (2024) m⁶A methylation profiling as a prognostic marker in nasopharyngeal carcinoma: insights from MeRIP-Seq and RNA-Seq, Front. Immunol., 15, 1492648, https://doi.org/10.3389/fimmu.2024.1492648.
- Li, A., Gan, Y., Cao, C., Ma, B., Zhang, Q., Zhang, Q., and Yao, L. (2021) Transcriptome-wide map of N6-methyladenosine methylome profiling in human bladder cancer, Front. Oncol., 11, 717622, https://doi.org/10.3389/fonc.2021.717622.
- Zhu, D.-H., Su, K.-K., Ou-Yang, X.-X., Zhang, Y.-H., Yu, X.-P., Li, Z.-H., Ahmadi-Nishaboori, S.-S., and Li, L.-J. (2024) Mechanisms and clinical landscape of N6-methyladenosine (m⁶A) RNA modification in gastrointestinal tract cancers, Mol. Cell. Biochem., 479, 1553-1570, https://doi.org/10.1007/s11010-024-05040-x.
- Gavas, S., Quazi, S., and Karpiński, T. M. (2021) Nanoparticles for cancer therapy: current progress and challenges, Nanoscale Res. Lett., 16, 173, https://doi.org/10.1186/s11671-021-03628-6.
- Palakurthi, S. S., Shah, B., Kapre, S., Charbe, N., Immanuel, S., Pasham, S., Thalla, M., Jain, A., and Palakurthi, S. (2024) A comprehensive review of challenges and advances in exosome-based drug delivery systems, Nanoscale Adv., 6, 5803-5826, https://doi.org/10.1039/D4NA00501E.
- Dogbey, D. M., Torres, V. E. S., Fajemisin, E., Mpondo, L., Ngwenya, T., Akinrinmade, O. A., Perriman, A. W., and Barth, S. (2023) Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy, Drug Deliv. Transl. Res., 13, 2719-2738, https://doi.org/10.1007/s13346-023-01362-3.
- Gu, C., Wang, Z., Zhou, N., Li, G., Kou, Y., Luo, Y., Wang, Y., Yang, J., and Tian, F. (2019) Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1, Mol. Cancer, 18, 168, https://doi.org/10.1186/s12943-019-1084-1.
- Cao, L., Ren, Y., Guo, X., Wang, L., Zhang, Q., Li, X., Wu, X., Meng, Z., and Xu, K. (2020) Downregulation of SETD7 promotes migration and invasion of lung cancer cells via JAK2/STAT3 pathway, Int. J. Mol. Med., 45, 1616-1626, https://doi.org/10.3892/ijmm.2020.4523.
- Akiyama, Y., Koda, Y., Byeon, S.-J., Shimada, S., Nishikawaji, T., Sakamoto, A., Chen, Y., Kojima, K., Kawano, T., Eishi, Y., Deng, D., Kim, W. H., Zhu, W.-G., Yuasa, Y., and Tanaka, S. (2016) Reduced expression of SET7/9, a histone mono-methyltransferase, is associated with gastric cancer progression, Oncotarget, 7, 3966-3983, https://doi.org/10.18632/oncotarget.6681.
- Gu, Y., Wang, X., Liu, H., Li, G., Yu, W., and Ma, Q. (2018) SET7/9 promotes hepatocellular carcinoma progression through regulation of E2F1, Oncol. Rep., 40, 1863-1874, https://doi.org/10.3892/or.2018.6621.
- Monteiro, F. L., Williams, C., and Helguero, L. A. (2022) A systematic review to define the multi-faceted role of lysine methyltransferase SETD7 in cancer, Cancers (Basel)., 14, 1414, https://doi.org/10.3390/cancers14061414.
- Xie, Y., Zhao, J., Liang, Y., Chen, M., Luo, Y., Cui, X., Jiang, B., Peng, L., and Wang, X. (2019) MicroRNA-10b controls the metastasis and proliferation of colorectal cancer cells by regulating Krüppel-like factor 4, Artif. Cells Nanomed. Biotechnol., 47, 1722-1729, https://doi.org/10.1080/21691401.2019.1606006.
- Qi, X.-T., Li, Y.-L., Zhang, Y.-Q., Xu, T., Lu, B., Fang, L., Gao, J.-Q., Yu, L.-S., Zhu, D.-F., Yang, B., He, Q.-J., and Ying, M.-D. (2019) KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells, Acta Pharmacol. Sin., 40, 546-555, https://doi.org/10.1038/s41401-018-0050-6.
- Li, H., Wang, J., Xiao, W., Xia, D., Lang, B., Wang, T., Guo, X., Hu, Z., Ye, Z., and Xu, H. (2014) Epigenetic inactivation of KLF4 is associated with urothelial cancer progression and early recurrence, J. Urol., 191, 493-501, https://doi.org/10.1016/j.juro.2013.08.087.
- Xu, X., Li, J., Zhu, Y., Xie, B., Wang, X., Wang, S., Xie, H., Yan, H., Ying, Y., Lin, Y., Liu, B., Wang, W., and Zheng, X. (2017) CRISPR-ON-Mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo, Oncotarget, 8, 102078-102087, https://doi.org/10.18632/oncotarget.22158.
- Xie, H., Li, J., Ying, Y., Yan, H., Jin, K., Ma, X., He, L., Xu, X., Liu, B., Wang, X., Zheng, X., and Xie, L. (2020) METTL3/YTHDF2 m⁶A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer, J. Cell. Mol. Med., 24, 4092-4410, https://doi.org/10.1111/jcmm.15063.
- Wang, J., Luo, J., Wu, X., and Li, Z. (2024) WTAP enhances the instability of SYTL1 mRNA caused by YTHDF2 in bladder cancer, Histol. Histopathol., 39, 633-646, https://doi.org/10.14670/HH-18-671..
- Riegman, M., Sagie, L., Galed, C., Levin, T., Steinberg, N., Dixon, S. J., Wiesner, U., Bradbury, M. S., Niethammer, P., Zaritsky, A., and Overholtzer, M. (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture, Nat. Cell Biol., 22, 1042-1048, https://doi.org/10.1038/s41556-020-0565-1.
- An, W., Gupta, R., Zhai, K., Wang, Y., Xu, W., and Cui, Y. (2024) Current and potential roles of ferroptosis in bladder cancer, Curr. Med. Sci., 44, 51-63, https://doi.org/10.1007/s11596-023-2814-6.
- Dodson, M., Castro-Portuguez, R., and Zhang, D. D. (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis, Redox Biol., 23, 101107, https://doi.org/10.1016/j.redox.2019.101107.
- Koppula, P., Zhuang, L., and Gan, B. (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy, Protein Cell, 12, 599-620, https://doi.org/10.1007/s13238-020-00789-5.
- Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., Roveri, A., Peng, X., Porto Freitas, F., Seibt, T., Mehr, L., Aichler, M., Walch, A., Lamp, D., Jastroch, M., Miyamoto, S., Wurst, W., Ursini, F., Arnér, E. S. J., Fradejas-Villar, N., Schweizer, U., Zischka, H., Friedmann Angeli, J. P., and Conrad, M. (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis, Cell, 172, 409-422.e21, https://doi.org/ 10.1016/j.cell.2017.11.048.
- de Souza, I., Monteiro, L. K. S., Guedes, C. B., Silva, M. M., Andrade-Tomaz, M., Contieri, B., Latancia, M. T., Mendes, D., Porchia, B. F. M. M., Lazarini, M., Gomes, L. R., and Rocha, C. R. R. (2022) High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation, Cell Death Dis., 13, 591, https://doi.org/10.1038/s41419-022-05044-9.
- Wang, D., Tang, L., Zhang, Y., Ge, G., Jiang, X., Mo, Y., Wu, P., Deng, X., Li, L., Zuo, S., Yan, Q., Zhang, S., Wang, F., Shi, L., Li, X., Xiang, B., Zhou, M., Liao, Q., Guo, C., Zeng, Z., Xiong, W., and Gong, Z. (2022) Regulatory pathways and drugs associated with ferroptosis in tumors, Cell Death Dis., 13, 544, https://doi.org/10.1038/s41419-022-04927-1.
- Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., and Tang, D. (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology, 63, 173-184, https://doi.org/10.1002/hep.28251.
- Li, T., Jiang, D., and Wu, K. (2020) p62 promotes bladder cancer cell growth by activating KEAP1/NRF2-dependent antioxidative response, Cancer Sci., 111, 1156-1164, https://doi.org/10.1111/cas.14321.
- Ma, J., Hu, J., Zhao, L., Wu, Z., Li, R., and Deng, W. (2024) Identification of clinical prognostic factors and analysis of ferroptosis-related gene signatures in the bladder cancer immune microenvironment, BMC Urol., 24, 6, https://doi.org/10.1186/s12894-023-01354-y.
- Wang, K., Wang, G., Li, G., Zhang, W., Wang, Y., Lin, X., Han, C., Chen, H., Shi, L., Reheman, A., Li, J., Li, Z., and Yang, X. (2023) m⁶A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m⁶A-dependent ferroptosis regulation, Apoptosis, 28, 627-638, https://doi.org/10.1007/s10495-023-01817-5.
- Chen, L., and Wang, X. (2018) Relationship between the genetic expression of WTAP and bladder cancer and patient prognosis, Oncol. Lett., 16, 6966-6970, https://doi.org/10.3892/ol.2018.9554.
- Gao, N., Li, Y., Li, J., Gao, Z., Yang, Z., Li, Y., Liu, H., and Fan, T. (2020) Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers, Front. Oncol., 10, 598817, https://doi.org/10.3389/fonc.2020.598817.
- Qin, T., Li, J., and Zhang, K.-Q. (2020) Structure, regulation, and function of linear and circular long non-coding RNAs, Front. Genet., 11, 150, https://doi.org/10.3389/fgene.2020.00150.
- Luo, H., Xu, C., Le, W., Ge, B., and Wang, T. (2019) lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150, J. Cell. Biochem., 120, 13487-13493, https://doi.org/10.1002/jcb.28622.
- Zhang, Z., Zhou, C., Chang, Y., Zhang, Z., Hu, Y., Zhang, F., Lu, Y., Zheng, L., Zhang, W., Li, X., and Li, X. (2016) Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer, Cancer Lett., 376, 62-73, https://doi.org/10.1016/j.canlet. 2016.03.022.
- Huang, Y., Lv, Y., Yang, B., Zhang, S., Liu, B., Zhang, C., Hu, W., Jiang, L., Chen, C., Ji, D., Xiong, C., Liang, Y., Liu, M., Ying, X., and Ji, W. (2024) Enhancing m⁶A modification of lncRNA through METTL3 and RBM15 to promote malignant progression in bladder cancer, Heliyon, 10, e28165, https://doi.org/10.1016/j.heliyon.2024.e28165.
- Han, J., Wang, J. Z., Yang, X., Yu, H., Zhou, R., Lu, H. C., Yuan, W. B., Lu, J. C., Zhou, Z. J., Lu, Q., Wei, J. F., and Yang, H. (2019) METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m⁶A-dependent manner, Mol. Cancer, 18, 110, https://doi.org/10.1186/s12943-019-1036-9.
- Xie, J., Zhang, H., Wang, K., Ni, J., Ma, X., Khoury, C. J., Prifti, V., Hoard, B., Cerenzia, E. G., Yin, L., Zhang, H., Wang, R., Zhuo, D., Mao, W., and Peng, B. (2023) M⁶A-mediated-upregulation of lncRNA BLACAT3 promotes bladder cancer angiogenesis and hematogenous metastasis through YBX3 nuclear shuttling and enhancing NCF2 transcription, Oncogene, 42, 2956-2970, https://doi.org/10.1038/s41388-023-02814-3.
- Liu, J., Tian, C., Qiao, J., Deng, K., Ye, X., and Xiong, L. (2024) m⁶A methylation-mediated stabilization of LINC01106 suppresses bladder cancer progression by regulating the miR-3148/DAB1 axis, Biomedicines, 12, 114, https://doi.org/10.3390/biomedicines12010114.
- Yi, J., Ma, X., Ying, Y., Liu, Z., Tang, Y., Shu, X., Sun, J., Wu, Y., Lu, D., Wang, X., Luo, J., Liu, B., Zheng, X., Lin, Y., Li, J., and Xie, L. (2024) N6-methyladenosine-modified CircPSMA7 enhances bladder cancer malignancy through the miR-128-3p/MAPK1 axis, Cancer Lett., 585, 216613, https://doi.org/10.1016/j.canlet.2024.216613.
- Liu, P., Fan, B., Othmane, B., Hu, J., Li, H., Cui, Y., Ou, Z., Chen, J., and Zu, X. (2022) m⁶A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism, Theranostics, 12, 6291-6307, https://doi.org/10.7150/thno.71456.
- Guimarães-Teixeira, C., Lobo, J., Miranda-Gonçalves, V., Barros-Silva, D., Martins-Lima, C., Monteiro-Reis, S., Sequeira, J. P., Carneiro, I., Correia, M. P., Henrique, R., and Jerónimo, C. (2022) Downregulation of m⁶A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness, Mol. Oncol., 16, 1841-1856, https://doi.org/10.1002/1878-0261.13181.
- Zhang, N., Hua, X., Tu, H., Li, J., Zhang, Z., and Max, C. (2021) Isorhapontigenin (ISO) inhibits EMT through FOXO3A/METTL14/VIMENTIN pathway in bladder cancer cells, Cancer Lett., 520, 400-408, https://doi.org/10.1016/ j.canlet.2021.07.041.
- Xie, M., and Zhang, H. (2024) METTL14-mediate the biological effects of EMT in bladder cancer cells by methylating SOX4 mRNA with m⁶A, Indian J. Pharm. Educ. Res., 58, 814-821, https://doi.org/10.5530/ijper.58.3.89.
- Lavallee, E., Sfakianos, J. P., and Mulholland, D. J. (2021) Tumor heterogeneity and consequences for bladder cancer treatment, Cancers (Basel)., 13, 5297, https://doi.org/10.3390/cancers13215297.
- Wang, C., Ma, D., Yu, H., Zhuo, Z., and Ye, Z. (2023) N6-methyladenosine (m⁶A) as a regulator of carcinogenesis and drug resistance by targeting epithelial-mesenchymal transition and cancer stem cells, Heliyon, 9, e14001, https://doi.org/10.1016/j.heliyon.2023.e14001.
- Liu, W.-W., Zhang, Z.-Y., Wang, F., and Wang, H. (2023) Emerging roles of m⁶A RNA modification in cancer therapeutic resistance, Exp. Hematol. Oncol., 12, 21, https://doi.org/10.1186/s40164-023-00386-2.
- Liu, Z., Zou, H., Dang, Q., Xu, H., Liu, L., Zhang, Y., Lv, J., Li, H., Zhou, Z., and Han, X. (2022) Biological and pharmacological roles of m⁶A modifications in cancer drug resistance, Mol. Cancer, 21, 220, https://doi.org/10.1186/s12943-022-01680-z.
- Wang, L., Hui, H., Agrawal, K., Kang, Y., Li, N., Tang, R., Yuan, J., and Rana, T. M. (2020) m⁶A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy, EMBO J., 39, e104514, https://doi.org/10.15252/embj.2020104514.
- Ni, Z., Sun, P., Zheng, J., Wu, M., Yang, C., Cheng, M., Yin, M., Cui, C., Wang, G., Yuan, L., Gao, Q., and Li, Y. (2022) JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m⁶A modification of PD-L1 mRNA, Cancer Res., 82, 1789-1802, https://doi.org/10.1158/0008-5472.CAN-21-1323.
- Yu, H., Yang, X., Tang, J., Si, S., Zhou, Z., Lu, J., Han, J., Yuan, B., Wu, Q., Lu, Q., and Yang, H. (2021) ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m⁶A-CK2α-mediated glycolysis, Mol. Ther. Nucleic Acids, 23, 27-41, https://doi.org/10.1016/j.omtn.2020.10.031.
- Zhang, X., Yang, X., Yang, C., Li, P., Yuan, W., Deng, X., Cheng, Y., Li, P., Yang, H., Tao, J., and Lu, Q. (2016) Targeting protein kinase CK2 suppresses bladder cancer cell survival via the glucose metabolic pathway, Oncotarget, 7, 87361-87372, https://doi.org/10.18632/oncotarget.13571.
- Xu, C., Zhou, J., Zhang, X., Kang, X., Liu, S., Song, M., Chang, C., Lin, Y., and Wang, Y. (2024) N(6)-methyladenosine-modified circ_104797 sustains cisplatin resistance in bladder cancer through acting as RNA sponges, Cell. Mol. Biol. Lett., 29, 28, https://doi.org/10.1186/s11658-024-00543-3.
- Priem, D., Devos, M., Druwé, S., Martens, A., Slowicka, K., Ting, A. T., Pasparakis, M., Declercq, W., Vandenabeele, P., van Loo, G., and Bertrand, M. J. M. (2019) A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms, Cell Death Dis., 10, 692, https://doi.org/10.1038/s41419-019-1937-y.
- Wei, W., Sun, J., Zhang, H., Xiao, X., Huang, C., Wang, L., Zhong, H., Jiang, Y., Zhang, X., and Jiang, G. (2021) Circ0008399 interaction with WTAP promotes assembly and activity of the m⁶A methyltransferase complex and promotes cisplatin resistance in bladder cancer, Cancer Res., 81, 6142-6156, https://doi.org/10.1158/0008-5472.CAN-21-1518.
- Yu, H., Zhuang, J., Zhou, Z., Song, Q., Lv, J., Yang, X., Yang, H., and Lu, Q. (2024) METTL16 suppressed the proliferation and cisplatin-chemoresistance of bladder cancer by degrading PMEPA1 mRNA in a m⁶A manner through autophagy pathway, Int. J. Biol. Sci., 20, 1471-1491, https://doi.org/10.7150/ijbs.86719.
- Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons, Cell, 149, 1635-1646, https://doi.org/10.1016/j.cell.2012.05.003.
- Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R., and Rechavi, G. (2012) Topology of the human and mouse m⁶A RNA methylomes revealed by m⁶A-seq, Nature, 485, 201-206, https://doi.org/10.1038/nature11112.
- Bayoumi, M., and Munir, M. (2021) Evolutionary conservation of the DRACH signatures of potential N6-methyladenosine (m⁶A) sites among influenza A viruses, Sci. Rep., 11, 4548, https://doi.org/10.1038/s41598-021-84007-0.
- Liu, Z., and Zhang, J. (2018) Most m⁶A RNA modifications in protein-coding regions are evolutionarily unconserved and likely nonfunctional, Mol. Biol. Evol., 35, 666-675, https://doi.org/10.1093/molbev/msx320.
- An, M., Wang, H., and Zhu, Y. (2020) Mutations in m⁶A consensus motifs are suppressed in the m⁶A modified genes in human cancer cells, PLoS One, 15, e0236882, https://doi.org/10.1371/journal.pone.0236882.
- Deng, N., Zhou, H., Fan, H., and Yuan, Y. (2017) Single nucleotide polymorphisms and cancer susceptibility, Oncotarget, 8, 110635-110649, https://doi.org/10.18632/oncotarget.22372.
- Lv, J., Song, Q., Bai, K., Han, J., Yu, H., Li, K., Zhuang, J., Yang, X., Yang, H., and Lu, Q. (2022) N6-methyladenosine-related single-nucleotide polymorphism analyses identify oncogene RNFT2 in bladder cancer, Cancer Cell Int., 22, 301, https://doi.org/10.1186/s12935-022-02701-z.
- Zhang, C., Tunes, L., Hsieh, M.-H., Wang, P., Kumar, A., Khadgi, B. B., Yang, Y., Doxtader, K. A., Herrell, E., Koczy, O., Setlem, R., Zhang, X., Evers, B., Wang, Y., Xing, C., Zhu, H., and Nam, Y. (2023) Cancer mutations rewire the RNA methylation specificity of METTL3-METTL14, bioRxiv Prepr. Serv. Biol., 10, eads4750, https://doi.org/10.1101/2023.03.16.532618.
- Waldbillig, F., Bormann, F., Neuberger, M., Ellinger, J., Erben, P., Kriegmair, M. C., Michel, M. S., Nuhn, P., and Nientiedt, M. (2023) An m⁶A-driven prognostic marker panel for renal cell carcinoma based on the first transcriptome-wide m⁶A-seq, Diagnostics, 13, 823, https://doi.org/10.3390/diagnostics13050823.
- Zhang, G., Yang, J., Fang, J., Yu, R., Yin, Z., Chen, G., Tai, P., He, D., Cao, K., and Jiang, J. (2024) Development of an m⁶A subtype classifier to guide precision therapy for patients with bladder cancer, J. Cancer, 15, 5204-5217, https://doi.org/10.7150/jca.99483.
Supplementary files
