The role of m⁶A-rna methylation in bladder cancer development, progression, and treatment response

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Bladder cancer (BCa) remains a significant clinical challenge, characterized by high recurrence rates and variable responses to immunotherapy and chemotherapy. Recent studies have highlighted the role of N6-methyladenosine (m⁶A) RNA modification in regulating various cellular processes, including tumor progression and drug resistance. This review examines the impact of m⁶A methylation on BCa pathogenesis, with a particular focus on the role of m⁶A pathway factors and m⁶A-modified RNAs in tumorigenesis, proliferation, invasion and migration processes. Moreover, mechanisms of m⁶A-mediated chemotherapeutic resistance in BCa cells are evaluated, including single nucleotide polymorphisms in m⁶A-associated patterns. Significant advances in high-throughput analysis of m⁶A methylation enabled development of novel m⁶A-based biomarkers for risk assessment and early diagnosis of BCa, prediction of cancer relapse, and treatment response. In this manuscript, the prospects of m⁶A-based molecular diagnostics in BCa are outlined.

Full Text

Restricted Access

About the authors

T. V. Sinyagovskaya

First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: tsv.relentless@gmail.com

Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases

Russian Federation, 119991 Moscow

Yu. A. Li

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Institute for Urology and Reproductive Health

Russian Federation, 119991 Moscow

N. S. Vinchevskaya-Khmelnitskaya

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Institute for Urology and Reproductive Health

Russian Federation, 119991 Moscow

A. M. Agabalaeva

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Institute for Urology and Reproductive Health

Russian Federation, 119991 Moscow

N. I. Ponomareva

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases

Russian Federation, 119991 Moscow

S. A. Brezgin

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases

Russian Federation, 119991 Moscow

I. A. Goptar

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases

Russian Federation, 119991 Moscow

V. P. Chulanov

First Moscow State Medical University (Sechenov University); Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tsv.relentless@gmail.com

Department of Infectious Diseases

Russian Federation, 119991 Moscow; 119991 Moscow

A. M. Dymov

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Institute for Urology and Reproductive Health

Russian Federation, 119991 Moscow

A. Z. Vinarov

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Institute for Urology and Reproductive Health

Russian Federation, 119991 Moscow

D. S. Kostyushev

First Moscow State Medical University (Sechenov University)
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tsv.relentless@gmail.com

Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Faculty of Bioengineering and Bioinformatics

Russian Federation, 119991 Moscow; 119991 Moscow

A. P. Kostyusheva

First Moscow State Medical University (Sechenov University)

Email: tsv.relentless@gmail.com

Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases

Russian Federation, 119991 Moscow

References

  1. Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2024) Global cancer observatory: cancer today, Int. Agency Res., URL: https://gco.iarc.who.int/ today.
  2. Burger, M., Catto, J. W. F., Dalbagni, G., Grossman, H. B., Herr, H., Karakiewicz, P., Kassouf, W., Kiemeney, L. A., La Vecchia, C., Shariat, S., and Lotan, Y. (2013) Epidemiology and risk factors of urothelial bladder cancer, Eur. Urol., 63, 234-241, https://doi.org/10.1016/j.eururo.2012.07.033.
  3. Aldousari, S., and Kassouf, W. (2010) Update on the management of non-muscle invasive bladder cancer, Can. Urol. Assoc. J., 4, 56-64, https://doi.org/10.5489/cuaj.777.
  4. Shalata, A. T., Shehata, M., Van Bogaert, E., Ali, K. M., Alksas, A., Mahmoud, A., El-Gendy, E. M., Mohamed, M. A., Giridharan, G. A., Contractor, S., and El-Baz, A. (2022) Predicting recurrence of non-muscle-invasive bladder cancer: current techniques and future trends, Cancers, 14, 5019, https://doi.org/10.3390/cancers14205019.
  5. Jeong, S., Han, J. H., Jeong, C. W., Kim, H. H., Kwak, C., Yuk, H. D., and Ku, J. H. (2022) Clinical determinants of recurrence in pTa bladder cancer following transurethral resection of bladder tumor, BMC Cancer, 22, 631, https://doi.org/10.1186/s12885-022-09733-8.
  6. D’Andrea, D., Abufaraj, M., Susani, M., Ristl, R., Foerster, B., Kimura, S., Mari, A., Soria, F., Briganti, A., Karakiewicz, P. I., Gust, K. M., Rouprêt, M., and Shariat, S. F. (2018) Accurate prediction of progression to muscle-invasive disease in patients with pT1G3 bladder cancer: a clinical decision-making tool, Urol. Oncol., 36, 239.e1-239.e7, https://doi.org/10.1016/j.urolonc.2018.01.018.
  7. Lorenz, D. A., Sathe, S., Einstein, J. M., and Yeo, G. W. (2020) Direct RNA sequencing enables m⁶A detection in endogenous transcript isoforms at base-specific resolution, RNA, 26, 19-28, https://doi.org/10.1261/rna. 072785.119.
  8. Shu, L., Huang, X., Cheng, X., and Li, X. (2021) Emerging roles of N6-methyladenosine modification in neurodevelopment and neurodegeneration, Cells, 10, 2694, https://doi.org/10.3390/cells10102694.
  9. Sokpor, G., Xie, Y., Nguyen, H. P., and Tuoc, T. (2021) Emerging role of m⁶A methylome in brain development: implications for neurological disorders and potential treatment, Front. Cell Dev. Biol., 9, 656849, https://doi.org/10.3389/fcell.2021.656849.
  10. Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D., Qiao, Y., and Tang, C. (2020) Role of m⁶A RNA methylation in cardiovascular disease (review), Int. J. Mol. Med., 46, 1958-1972, https://doi.org/10.3892/ijmm.2020.4746.
  11. Kumari, R., Ranjan, P., Suleiman, Z. G., Goswami, S. K., Li, J., Prasad, R., and Verma, S. K. (2022) mRNA modifications in cardiovascular biology and disease: with a focus on m⁶A modification, Cardiovasc. Res., 118, 1680-1692, https://doi.org/10.1093/cvr/cvab160.
  12. Williams, G. D., Gokhale, N. S., and Horner, S. M. (2019) Regulation of viral infection by the RNA modification N6-methyladenosine, Annu. Rev. Virol., 6, 235-253, https://doi.org/10.1146/annurev-virology-092818-015559.
  13. Li, Y., Zhang, Q., Cui, G., Zhao, F., Tian, X., Sun, B.-F., Yang, Y., and Li, W. (2020) m⁶A regulates liver metabolic disorders and hepatogenous diabetes, Genom. Proteom. Bioinform., 18, 371-383, https://doi.org/10.1016/ j.gpb.2020.06.003.
  14. Zhang, C., Fu, J., and Zhou, Y. (2019) A review in research progress concerning m⁶A Methylation and Immunoregulation, Front. Immunol., 10, 922, https://doi.org/10.3389/fimmu.2019.00922.
  15. Tan, F., Zhao, M., Xiong, F., Wang, Y., Zhang, S., Gong, Z., Li, X., He, Y., Shi, L., Wang, F., Xiang, B., Zhou, M., Li, X., Li, Y., Li, G., Zeng, Z., Xiong, W., and Guo, C. (2021) N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies, J. Exp. Clin. Cancer Res., 40, 146, https://doi.org/10.1186/s13046-021-01952-4.
  16. Hong, K. (2018) Emerging function of N6-methyladenosine in cancer, Oncol. Lett., 16, 5519-5524, https://doi.org/10.3892/ol.2018.9395.
  17. Weiner, A. B., Desai, A. S., and Meeks, J. J. (2019) Tumor location may predict adverse pathology and survival following definitive treatment for bladder cancer: a national cohort study, Eur. Urol. Oncol., 2, 304-310, https://doi.org/10.1016/j.euo.2018.08.018.
  18. Kassouf, W., Spiess, P. E., Brown, G. A., Liu, P., Grossman, H. B., Dinney, C. P. N., and Kamat, A. M. (2008) Prostatic urethral biopsy has limited usefulness in counseling patients regarding final urethral margin status during orthotopic neobladder reconstruction, J. Urol., 180, 164-167, https://doi.org/10.1016/j.juro.2008.03.037.
  19. Gontero, P., Birtle, A., Capoun, O., Compérat, E., Dominguez-Escrig, J. L., Liedberg, F., Mariappan, P., Masson-Lecomte, A., Mostafid, H. A., Pradere, B., Rai, B. P., van Rhijn, B. W. G., Seisen, T., Shariat, S. F., Soria, F., Soukup, V., Wood, R., and Xylinas, E. N. (2024) European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) – a summary of the 2024 guidelines update, Eur. Urol., 86, 531-549, https://doi.org/10.1016/j.eururo.2024.07.027.
  20. Flores Monar, G. V., Reynolds, T., Gordon, M., Moon, D., and Moon, C. (2023) Molecular markers for bladder cancer screening: an insight into bladder cancer and FDA-approved biomarkers, Int. J. Mol. Sci., 24, 14374, https://doi.org/10.3390/ijms241814374.
  21. Fan, J., Chen, B., Luo, Q., Li, J., Huang, Y., Zhu, M., Chen, Z., Li, J., Wang, J., Liu, L., Wei, Q., and Cao, D. (2024) Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer, Biomed. Pharmacother., 173, 116312, https://doi.org/10.1016/j.biopha.2024.116312.
  22. Hu, X., Li, G., and Wu, S. (2022) Advances in diagnosis and therapy for bladder cancer, Cancers (Basel), 14, 3181, https://doi.org/10.3390/cancers14133181.
  23. Batista, R., Vinagre, N., Meireles, S., Vinagre, J., Prazeres, H., Leão, R., Máximo, V., and Soares, P. (2020) Biomarkers for bladder cancer diagnosis and surveillance: a comprehensive review, Diagnostics, 10, 39, https://doi.org/10.3390/diagnostics10010039.
  24. Soria, F., Droller, M. J., Lotan, Y., Gontero, P., D’Andrea, D., Gust, K. M., Rouprêt, M., Babjuk, M., Palou, J., and Shariat, S. F. (2018) An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer, World J. Urol., 36, 1981-1995, https://doi.org/10.1007/s00345-018-2380-x.
  25. Sylvester, R. J., Oosterlinck, W., Holmang, S., Sydes, M. R., Birtle, A., Gudjonsson, S., De Nunzio, C., Okamura, K., Kaasinen, E., Solsona, E., Ali-El-Dein, B., Tatar, C. A., Inman, B. A., N’Dow, J., Oddens, J. R., and Babjuk, M. (2016) Systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa-pT1 urothelial carcinoma, Eur. Urol., 69, 231-244, https://doi.org/10.1016/j.eururo. 2015.05.050.
  26. Lidagoster, S., Ben-David, R., De Leon, B., and Sfakianos, J. P. (2024) BCG and alternative therapies to BCG therapy for non-muscle-invasive bladder cancer, Curr. Oncol., 31, 1063-1078, https://doi.org/10.3390/curroncol31020079.
  27. Oerum, S., Meynier, V., Catala, M., and Tisné, C. (2021) A comprehensive review of m⁶A/m⁶Am RNA methyltransferase structures, Nucleic Acids Res., 49, 7239-7255, https://doi.org/10.1093/nar/gkab378.
  28. Wang, T., Kong, S., Tao, M., and Ju, S. (2020) The potential role of RNA N6-methyladenosine in cancer progression, Mol. Cancer, 19, 88, https://doi.org/10.1186/s12943-020-01204-7.
  29. Qu, J., Yan, H., Hou, Y., Cao, W., Liu, Y., Zhang, E., He, J., and Cai, Z. (2022) RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential, J. Hematol. Oncol., 15, 8, https://doi.org/10.1186/s13045-022-01224-4.
  30. Azzam, S. K., Alsafar, H., and Sajini, A. A. (2022) FTO m⁶A demethylase in obesity and cancer: implications and underlying molecular mechanisms, Int. J. Mol. Sci., 23, 3800, https://doi.org/10.3390/ijms23073800.
  31. Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., Ren, B., Pan, T., and He, C. (2014) N6-methyladenosine-dependent regulation of messenger RNA stability, Nature, 505, 117-120, https://doi.org/10.1038/nature12730.
  32. Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, 518, 560-564, https://doi.org/10.1038/nature14234.
  33. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B. S., Mesquita, A., Liu, C., Yuan, C. L., Hu, Y.-C., Hüttelmaier, S., Skibbe, J. R., Su, R., Deng, X., Dong, L., Sun, M., Li, C., Nachtergaele, S., Wang, Y., Hu, C., Ferchen, K., Greis, K. D., Jiang, X., Wei, M., Qu, L., Guan, J.-L., He, C., Yang, J., and Chen, J. (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation, Nat. Cell Biol., 20, 285-295, https://doi.org/10.1038/s41556-018-0045-z.
  34. Choe, J., Lin, S., Zhang, W., Liu, Q., Wang, L., Ramirez-Moya, J., Du, P., Kim, W., Tang, S., Sliz, P., Santisteban, P., George, R. E., Richards, W. G., Wong, K.-K., Locker, N., Slack, F. J., and Gregory, R. I. (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis, Nature, 561, 556-560, https://doi.org/ 10.1038/s41586-018-0538-8.
  35. Uddin, M. B., Wang, Z., and Yang, C. (2021) The m⁶A RNA methylation regulates oncogenic signaling pathways driving cell malignant transformation and carcinogenesis, Mol. Cancer, 20, 61, https://doi.org/10.1186/s12943-021-01356-0.
  36. Deng, X., Su, R., Weng, H., Huang, H., Li, Z., and Chen, J. (2018) RNA N(6)-methyladenosine modification in cancers: current status and perspectives, Cell Res., 28, 507-517, https://doi.org/10.1038/s41422-018-0034-6.
  37. Wang, S., Chai, P., Jia, R., and Jia, R. (2018) Novel insights on m⁶A RNA methylation in tumorigenesis: a double-edged sword, Mol. Cancer, 17, 101, https://doi.org/10.1186/s12943-018-0847-4.
  38. Liu, Q. (2021) Current advances in N6-methyladenosine methylation modification during bladder cancer, Front. Genet., 12, 825109, https://doi.org/10.3389/fgene.2021.825109.
  39. Chen, M., Nie, Z., Wen, X., Gao, Y., Cao, H., and Zhang, S. (2019) m⁶A RNA methylation regulators can contribute to malignant progression and impact the prognosis of bladder cancer, Biosci. Rep., 39, BSR20192892, https://doi.org/10.1042/BSR20192892.
  40. Wu, J., Wang, X., Xu, H., Tian, J., Ji, H., Zhu, J., Guo, H., and Chen, Z. (2022) Bioinformatics analysis of the correlation between m⁶A RNA methylation regulators and the immune infiltration and prognosis of bladder cancer, Ann. Transl. Med., 10, 1386, https://doi.org/10.21037/atm-22-5993.
  41. Shen, C., Liu, J., Wang, J., Yang, X., Niu, H., and Wang, Y. (2020) The analysis of PTPN6 for bladder cancer: an exploratory study based on TCGA, Dis. Markers, 2020, 4312629, https://doi.org/10.1155/2020/ 4312629.
  42. Wu, N., Sun, Y., Xue, D., and He, X. (2024) FTO promotes the progression of bladder cancer via demethylating m⁶A modifications in PTPN6 mRNA, Heliyon, 10, e34031, https://doi.org/10.1016/j.heliyon.2024.e34031.
  43. Tao, L., Mu, X., Chen, H., Jin, D., Zhang, R., Zhao, Y., Fan, J., Cao, M., and Zhou, Z. (2021) FTO modifies the m⁶A level of MALAT and promotes bladder cancer progression, Clin. Transl. Med., 11, e310, https://doi.org/ 10.1002/ctm2.310.
  44. Zhou, G., Yan, K., Liu, J., Gao, L., Jiang, X., and Fan, Y. (2021) FTO promotes tumour proliferation in bladder cancer via the FTO/miR-576/CDK6 axis in an m⁶A-dependent manner, Cell Death Discov., 7, 329, https://doi.org/10.1038/s41420-021-00762-z.
  45. Huang, W., Zhu, L., Huang, H., Li, Y., Wang, G., and Zhang, C. (2023) IGF2BP3 overexpression predicts poor prognosis and correlates with immune infiltration in bladder cancer, BMC Cancer, 23, 116, https://doi.org/10.1186/s12885-022-10353-5.
  46. Fu, D., Shi, X., Yi, X., Wu, D., He, H., Zhou, W., and Cheng, W. (2024) m⁶A reader IGF2BP2 promotes M2 macrophage polarization and malignant biological behavior of bladder cancer by stabilizing NRP1 mRNA expression, BMC Urol., 24, 147, https://doi.org/10.1186/s12894-024-01534-4.
  47. Lv, L., Wei, Q., Zhang, J., Dong, Y., Shan, Z., Chang, N., Zhao, Y., Bian, P., and Yi, Q. (2024) IGF2BP3 prevent HMGB1 mRNA decay in bladder cancer and development, Cell. Mol. Biol. Lett., 29, 39, https://doi.org/10.1186/s11658-024-00545-1.
  48. Watt, F. M. (2002) Role of integrins in regulating epidermal adhesion, growth and differentiation, EMBO J., 21, 3919-3926, https://doi.org/10.1093/emboj/cdf399.
  49. Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines, Cell, 110, 673-687, https://doi.org/10.1016/S0092-8674(02)00971-6.
  50. Stewart, R. L., West, D., Wang, C., Weiss, H. L., Gal, T., Durbin, E. B., O’Connor, W., Chen, M., and O’Connor, K. L. (2016) Elevated integrin α6β4 expression is associated with venous invasion and decreased overall survival in non-small cell lung cancer, Hum. Pathol., 54, 174-183, https://doi.org/10.1016/j.humpath. 2016.04.003.
  51. Ammothumkandy, A., Maliekal, T. T., Bose, M. V., Rajkumar, T., Shirley, S., Thejaswini, B., Giri, V. G., and Krishna, S. (2016) CD66 and CD49f expressing cells are associated with distinct neoplastic phenotypes and progression in human cervical cancer, Eur. J. Cancer, 60, 166-178, https://doi.org/10.1016/j.ejca. 2016.03.072.
  52. Duan, X., Li, H., Wang, M., Ju, S., Li, F., Chen, P., Lu, H., Han, X., and Ren, J. (2021) PSMC2/ITGA6 axis plays critical role in the development and progression of hepatocellular carcinoma, Cell Death Discov., 7, 217, https://doi.org/10.1038/s41420-021-00585-y.
  53. Wei, L., Yin, F., Chen, C., and Li, L. (2019) Expression of integrin α-6 is associated with multi drug resistance and prognosis in ovarian cancer, Oncol. Lett., 17, 3974-3980, https://doi.org/10.3892/ol.2019.10056.
  54. Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E., and Morishita, K. (2012) The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1(high) leukemia, PLoS One, 7, e30706, https://doi.org/10.1371/ journal.pone.0030706.
  55. Jin, H., Ying, X., Que, B., Wang, X., Chao, Y., Zhang, H., Yuan, Z., Qi, D., Lin, S., Min, W., Yang, M., and Ji, W. (2019) N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer, EBioMedicine, 47, 195-207, https://doi.org/10.1016/j.ebiom.2019.07.068.
  56. Ying, X., Huang, Y., Liu, B., Hu, W. Y., Ji, D., Chen, C., Zhang, H., Liang, Y., Lv, Y., and Ji, W. (2024) Targeted m⁶A demethylation of ITGA6 mRNA by a multisite dCasRx-m⁶A editor inhibits bladder cancer development, J. Adv. Res., 56, 57-68, https://doi.org/10.1016/j.jare.2023.03.010.
  57. Law, M. E., Ferreira, R. B., Davis, B. J., Higgins, P. J., Kim, J.-S., Castellano, R. K., Chen, S., Luesch, H., and Law, B. K. (2016) CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment, Breast Cancer Res., 18, 80, https://doi.org/10.1186/s13058-016-0741-1.
  58. Scherl-Mostageer, M., Sommergruber, W., Abseher, R., Hauptmann, R., Ambros, P., and Schweifer, N. (2001) Identification of a novel gene, CDCP1, overexpressed in human colorectal cancer, Oncogene, 20, 4402-4408, https://doi.org/10.1038/sj.onc.1204566.
  59. Perry, S. E., Robinson, P., Melcher, A., Quirke, P., Bühring, H.-J., Cook, G. P., and Blair, G. E. (2007) Expression of the CUB domain containing protein 1 (CDCP1) gene in colorectal tumour cells, FEBS Lett., 581, 1137-1142, https://doi.org/10.1016/j.febslet.2007.02.025.
  60. Ikeda, J., Oda, T., Inoue, M., Uekita, T., Sakai, R., Okumura, M., Aozasa, K., and Morii, E. (2009) Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung, Cancer Sci., 100, 429-433, https://doi.org/10.1111/j.1349-7006.2008.01066.x.
  61. Awakura, Y., Nakamura, E., Takahashi, T., Kotani, H., Mikami, Y., Kadowaki, T., Myoumoto, A., Akiyama, H., Ito, N., Kamoto, T., Manabe, T., Nobumasa, H., Tsujimoto, G., and Ogawa, O. (2008) Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma, J. Cancer Res. Clin. Oncol., 134, 1363-1369, https://doi.org/10.1007/s00432-008-0412-4.
  62. Casar, B., Rimann, I., Kato, H., Shattil, S. J., Quigley, J. P., and Deryugina, E. I. (2014) In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling, Oncogene, 33, 255-268, https://doi.org/10.1038/onc.2012.547.
  63. Yang, F., Jin, H., Que, B., Chao, Y., Zhang, H., Ying, X., Zhou, Z., Yuan, Z., Su, J., Wu, B., Zhang, W., Qi, D., Chen, D., Min, W., Lin, S., and Ji, W. (2019) Dynamic m⁶A mRNA methylation reveals the role of METTL3-m⁶A-CDCP1 signaling axis in chemical carcinogenesis, Oncogene, 38, 4755-4772, https://doi.org/10.1038/s41388-019-0755-0.
  64. Ying, X., Jiang, X., Zhang, H., Liu, B., Huang, Y., Zhu, X., Qi, D., Yuan, G., Luo, J., and Ji, W. (2020) Programmable N6-methyladenosine modification of CDCP1 mRNA by RCas9-methyltransferase like 3 conjugates promotes bladder cancer development, Mol. Cancer, 19, 169, https://doi.org/10.1186/s12943-020-01289-0.
  65. Chen, X., Xu, W., Pan, J., Yang, H., Li, Y., Chen, X., Sun, Y., Liu, Q., and Qiu, S. (2024) m⁶A methylation profiling as a prognostic marker in nasopharyngeal carcinoma: insights from MeRIP-Seq and RNA-Seq, Front. Immunol., 15, 1492648, https://doi.org/10.3389/fimmu.2024.1492648.
  66. Li, A., Gan, Y., Cao, C., Ma, B., Zhang, Q., Zhang, Q., and Yao, L. (2021) Transcriptome-wide map of N6-methyladenosine methylome profiling in human bladder cancer, Front. Oncol., 11, 717622, https://doi.org/10.3389/fonc.2021.717622.
  67. Zhu, D.-H., Su, K.-K., Ou-Yang, X.-X., Zhang, Y.-H., Yu, X.-P., Li, Z.-H., Ahmadi-Nishaboori, S.-S., and Li, L.-J. (2024) Mechanisms and clinical landscape of N6-methyladenosine (m⁶A) RNA modification in gastrointestinal tract cancers, Mol. Cell. Biochem., 479, 1553-1570, https://doi.org/10.1007/s11010-024-05040-x.
  68. Gavas, S., Quazi, S., and Karpiński, T. M. (2021) Nanoparticles for cancer therapy: current progress and challenges, Nanoscale Res. Lett., 16, 173, https://doi.org/10.1186/s11671-021-03628-6.
  69. Palakurthi, S. S., Shah, B., Kapre, S., Charbe, N., Immanuel, S., Pasham, S., Thalla, M., Jain, A., and Palakurthi, S. (2024) A comprehensive review of challenges and advances in exosome-based drug delivery systems, Nanoscale Adv., 6, 5803-5826, https://doi.org/10.1039/D4NA00501E.
  70. Dogbey, D. M., Torres, V. E. S., Fajemisin, E., Mpondo, L., Ngwenya, T., Akinrinmade, O. A., Perriman, A. W., and Barth, S. (2023) Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy, Drug Deliv. Transl. Res., 13, 2719-2738, https://doi.org/10.1007/s13346-023-01362-3.
  71. Gu, C., Wang, Z., Zhou, N., Li, G., Kou, Y., Luo, Y., Wang, Y., Yang, J., and Tian, F. (2019) Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1, Mol. Cancer, 18, 168, https://doi.org/10.1186/s12943-019-1084-1.
  72. Cao, L., Ren, Y., Guo, X., Wang, L., Zhang, Q., Li, X., Wu, X., Meng, Z., and Xu, K. (2020) Downregulation of SETD7 promotes migration and invasion of lung cancer cells via JAK2/STAT3 pathway, Int. J. Mol. Med., 45, 1616-1626, https://doi.org/10.3892/ijmm.2020.4523.
  73. Akiyama, Y., Koda, Y., Byeon, S.-J., Shimada, S., Nishikawaji, T., Sakamoto, A., Chen, Y., Kojima, K., Kawano, T., Eishi, Y., Deng, D., Kim, W. H., Zhu, W.-G., Yuasa, Y., and Tanaka, S. (2016) Reduced expression of SET7/9, a histone mono-methyltransferase, is associated with gastric cancer progression, Oncotarget, 7, 3966-3983, https://doi.org/10.18632/oncotarget.6681.
  74. Gu, Y., Wang, X., Liu, H., Li, G., Yu, W., and Ma, Q. (2018) SET7/9 promotes hepatocellular carcinoma progression through regulation of E2F1, Oncol. Rep., 40, 1863-1874, https://doi.org/10.3892/or.2018.6621.
  75. Monteiro, F. L., Williams, C., and Helguero, L. A. (2022) A systematic review to define the multi-faceted role of lysine methyltransferase SETD7 in cancer, Cancers (Basel)., 14, 1414, https://doi.org/10.3390/cancers14061414.
  76. Xie, Y., Zhao, J., Liang, Y., Chen, M., Luo, Y., Cui, X., Jiang, B., Peng, L., and Wang, X. (2019) MicroRNA-10b controls the metastasis and proliferation of colorectal cancer cells by regulating Krüppel-like factor 4, Artif. Cells Nanomed. Biotechnol., 47, 1722-1729, https://doi.org/10.1080/21691401.2019.1606006.
  77. Qi, X.-T., Li, Y.-L., Zhang, Y.-Q., Xu, T., Lu, B., Fang, L., Gao, J.-Q., Yu, L.-S., Zhu, D.-F., Yang, B., He, Q.-J., and Ying, M.-D. (2019) KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells, Acta Pharmacol. Sin., 40, 546-555, https://doi.org/10.1038/s41401-018-0050-6.
  78. Li, H., Wang, J., Xiao, W., Xia, D., Lang, B., Wang, T., Guo, X., Hu, Z., Ye, Z., and Xu, H. (2014) Epigenetic inactivation of KLF4 is associated with urothelial cancer progression and early recurrence, J. Urol., 191, 493-501, https://doi.org/10.1016/j.juro.2013.08.087.
  79. Xu, X., Li, J., Zhu, Y., Xie, B., Wang, X., Wang, S., Xie, H., Yan, H., Ying, Y., Lin, Y., Liu, B., Wang, W., and Zheng, X. (2017) CRISPR-ON-Mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo, Oncotarget, 8, 102078-102087, https://doi.org/10.18632/oncotarget.22158.
  80. Xie, H., Li, J., Ying, Y., Yan, H., Jin, K., Ma, X., He, L., Xu, X., Liu, B., Wang, X., Zheng, X., and Xie, L. (2020) METTL3/YTHDF2 m⁶A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer, J. Cell. Mol. Med., 24, 4092-4410, https://doi.org/10.1111/jcmm.15063.
  81. Wang, J., Luo, J., Wu, X., and Li, Z. (2024) WTAP enhances the instability of SYTL1 mRNA caused by YTHDF2 in bladder cancer, Histol. Histopathol., 39, 633-646, https://doi.org/10.14670/HH-18-671..
  82. Riegman, M., Sagie, L., Galed, C., Levin, T., Steinberg, N., Dixon, S. J., Wiesner, U., Bradbury, M. S., Niethammer, P., Zaritsky, A., and Overholtzer, M. (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture, Nat. Cell Biol., 22, 1042-1048, https://doi.org/10.1038/s41556-020-0565-1.
  83. An, W., Gupta, R., Zhai, K., Wang, Y., Xu, W., and Cui, Y. (2024) Current and potential roles of ferroptosis in bladder cancer, Curr. Med. Sci., 44, 51-63, https://doi.org/10.1007/s11596-023-2814-6.
  84. Dodson, M., Castro-Portuguez, R., and Zhang, D. D. (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis, Redox Biol., 23, 101107, https://doi.org/10.1016/j.redox.2019.101107.
  85. Koppula, P., Zhuang, L., and Gan, B. (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy, Protein Cell, 12, 599-620, https://doi.org/10.1007/s13238-020-00789-5.
  86. Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., Roveri, A., Peng, X., Porto Freitas, F., Seibt, T., Mehr, L., Aichler, M., Walch, A., Lamp, D., Jastroch, M., Miyamoto, S., Wurst, W., Ursini, F., Arnér, E. S. J., Fradejas-Villar, N., Schweizer, U., Zischka, H., Friedmann Angeli, J. P., and Conrad, M. (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis, Cell, 172, 409-422.e21, https://doi.org/ 10.1016/j.cell.2017.11.048.
  87. de Souza, I., Monteiro, L. K. S., Guedes, C. B., Silva, M. M., Andrade-Tomaz, M., Contieri, B., Latancia, M. T., Mendes, D., Porchia, B. F. M. M., Lazarini, M., Gomes, L. R., and Rocha, C. R. R. (2022) High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation, Cell Death Dis., 13, 591, https://doi.org/10.1038/s41419-022-05044-9.
  88. Wang, D., Tang, L., Zhang, Y., Ge, G., Jiang, X., Mo, Y., Wu, P., Deng, X., Li, L., Zuo, S., Yan, Q., Zhang, S., Wang, F., Shi, L., Li, X., Xiang, B., Zhou, M., Liao, Q., Guo, C., Zeng, Z., Xiong, W., and Gong, Z. (2022) Regulatory pathways and drugs associated with ferroptosis in tumors, Cell Death Dis., 13, 544, https://doi.org/10.1038/s41419-022-04927-1.
  89. Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., and Tang, D. (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology, 63, 173-184, https://doi.org/10.1002/hep.28251.
  90. Li, T., Jiang, D., and Wu, K. (2020) p62 promotes bladder cancer cell growth by activating KEAP1/NRF2-dependent antioxidative response, Cancer Sci., 111, 1156-1164, https://doi.org/10.1111/cas.14321.
  91. Ma, J., Hu, J., Zhao, L., Wu, Z., Li, R., and Deng, W. (2024) Identification of clinical prognostic factors and analysis of ferroptosis-related gene signatures in the bladder cancer immune microenvironment, BMC Urol., 24, 6, https://doi.org/10.1186/s12894-023-01354-y.
  92. Wang, K., Wang, G., Li, G., Zhang, W., Wang, Y., Lin, X., Han, C., Chen, H., Shi, L., Reheman, A., Li, J., Li, Z., and Yang, X. (2023) m⁶A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m⁶A-dependent ferroptosis regulation, Apoptosis, 28, 627-638, https://doi.org/10.1007/s10495-023-01817-5.
  93. Chen, L., and Wang, X. (2018) Relationship between the genetic expression of WTAP and bladder cancer and patient prognosis, Oncol. Lett., 16, 6966-6970, https://doi.org/10.3892/ol.2018.9554.
  94. Gao, N., Li, Y., Li, J., Gao, Z., Yang, Z., Li, Y., Liu, H., and Fan, T. (2020) Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers, Front. Oncol., 10, 598817, https://doi.org/10.3389/fonc.2020.598817.
  95. Qin, T., Li, J., and Zhang, K.-Q. (2020) Structure, regulation, and function of linear and circular long non-coding RNAs, Front. Genet., 11, 150, https://doi.org/10.3389/fgene.2020.00150.
  96. Luo, H., Xu, C., Le, W., Ge, B., and Wang, T. (2019) lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150, J. Cell. Biochem., 120, 13487-13493, https://doi.org/10.1002/jcb.28622.
  97. Zhang, Z., Zhou, C., Chang, Y., Zhang, Z., Hu, Y., Zhang, F., Lu, Y., Zheng, L., Zhang, W., Li, X., and Li, X. (2016) Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer, Cancer Lett., 376, 62-73, https://doi.org/10.1016/j.canlet. 2016.03.022.
  98. Huang, Y., Lv, Y., Yang, B., Zhang, S., Liu, B., Zhang, C., Hu, W., Jiang, L., Chen, C., Ji, D., Xiong, C., Liang, Y., Liu, M., Ying, X., and Ji, W. (2024) Enhancing m⁶A modification of lncRNA through METTL3 and RBM15 to promote malignant progression in bladder cancer, Heliyon, 10, e28165, https://doi.org/10.1016/j.heliyon.2024.e28165.
  99. Han, J., Wang, J. Z., Yang, X., Yu, H., Zhou, R., Lu, H. C., Yuan, W. B., Lu, J. C., Zhou, Z. J., Lu, Q., Wei, J. F., and Yang, H. (2019) METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m⁶A-dependent manner, Mol. Cancer, 18, 110, https://doi.org/10.1186/s12943-019-1036-9.
  100. Xie, J., Zhang, H., Wang, K., Ni, J., Ma, X., Khoury, C. J., Prifti, V., Hoard, B., Cerenzia, E. G., Yin, L., Zhang, H., Wang, R., Zhuo, D., Mao, W., and Peng, B. (2023) M⁶A-mediated-upregulation of lncRNA BLACAT3 promotes bladder cancer angiogenesis and hematogenous metastasis through YBX3 nuclear shuttling and enhancing NCF2 transcription, Oncogene, 42, 2956-2970, https://doi.org/10.1038/s41388-023-02814-3.
  101. Liu, J., Tian, C., Qiao, J., Deng, K., Ye, X., and Xiong, L. (2024) m⁶A methylation-mediated stabilization of LINC01106 suppresses bladder cancer progression by regulating the miR-3148/DAB1 axis, Biomedicines, 12, 114, https://doi.org/10.3390/biomedicines12010114.
  102. Yi, J., Ma, X., Ying, Y., Liu, Z., Tang, Y., Shu, X., Sun, J., Wu, Y., Lu, D., Wang, X., Luo, J., Liu, B., Zheng, X., Lin, Y., Li, J., and Xie, L. (2024) N6-methyladenosine-modified CircPSMA7 enhances bladder cancer malignancy through the miR-128-3p/MAPK1 axis, Cancer Lett., 585, 216613, https://doi.org/10.1016/j.canlet.2024.216613.
  103. Liu, P., Fan, B., Othmane, B., Hu, J., Li, H., Cui, Y., Ou, Z., Chen, J., and Zu, X. (2022) m⁶A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism, Theranostics, 12, 6291-6307, https://doi.org/10.7150/thno.71456.
  104. Guimarães-Teixeira, C., Lobo, J., Miranda-Gonçalves, V., Barros-Silva, D., Martins-Lima, C., Monteiro-Reis, S., Sequeira, J. P., Carneiro, I., Correia, M. P., Henrique, R., and Jerónimo, C. (2022) Downregulation of m⁶A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness, Mol. Oncol., 16, 1841-1856, https://doi.org/10.1002/1878-0261.13181.
  105. Zhang, N., Hua, X., Tu, H., Li, J., Zhang, Z., and Max, C. (2021) Isorhapontigenin (ISO) inhibits EMT through FOXO3A/METTL14/VIMENTIN pathway in bladder cancer cells, Cancer Lett., 520, 400-408, https://doi.org/10.1016/ j.canlet.2021.07.041.
  106. Xie, M., and Zhang, H. (2024) METTL14-mediate the biological effects of EMT in bladder cancer cells by methylating SOX4 mRNA with m⁶A, Indian J. Pharm. Educ. Res., 58, 814-821, https://doi.org/10.5530/ijper.58.3.89.
  107. Lavallee, E., Sfakianos, J. P., and Mulholland, D. J. (2021) Tumor heterogeneity and consequences for bladder cancer treatment, Cancers (Basel)., 13, 5297, https://doi.org/10.3390/cancers13215297.
  108. Wang, C., Ma, D., Yu, H., Zhuo, Z., and Ye, Z. (2023) N6-methyladenosine (m⁶A) as a regulator of carcinogenesis and drug resistance by targeting epithelial-mesenchymal transition and cancer stem cells, Heliyon, 9, e14001, https://doi.org/10.1016/j.heliyon.2023.e14001.
  109. Liu, W.-W., Zhang, Z.-Y., Wang, F., and Wang, H. (2023) Emerging roles of m⁶A RNA modification in cancer therapeutic resistance, Exp. Hematol. Oncol., 12, 21, https://doi.org/10.1186/s40164-023-00386-2.
  110. Liu, Z., Zou, H., Dang, Q., Xu, H., Liu, L., Zhang, Y., Lv, J., Li, H., Zhou, Z., and Han, X. (2022) Biological and pharmacological roles of m⁶A modifications in cancer drug resistance, Mol. Cancer, 21, 220, https://doi.org/10.1186/s12943-022-01680-z.
  111. Wang, L., Hui, H., Agrawal, K., Kang, Y., Li, N., Tang, R., Yuan, J., and Rana, T. M. (2020) m⁶A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy, EMBO J., 39, e104514, https://doi.org/10.15252/embj.2020104514.
  112. Ni, Z., Sun, P., Zheng, J., Wu, M., Yang, C., Cheng, M., Yin, M., Cui, C., Wang, G., Yuan, L., Gao, Q., and Li, Y. (2022) JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m⁶A modification of PD-L1 mRNA, Cancer Res., 82, 1789-1802, https://doi.org/10.1158/0008-5472.CAN-21-1323.
  113. Yu, H., Yang, X., Tang, J., Si, S., Zhou, Z., Lu, J., Han, J., Yuan, B., Wu, Q., Lu, Q., and Yang, H. (2021) ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m⁶A-CK2α-mediated glycolysis, Mol. Ther. Nucleic Acids, 23, 27-41, https://doi.org/10.1016/j.omtn.2020.10.031.
  114. Zhang, X., Yang, X., Yang, C., Li, P., Yuan, W., Deng, X., Cheng, Y., Li, P., Yang, H., Tao, J., and Lu, Q. (2016) Targeting protein kinase CK2 suppresses bladder cancer cell survival via the glucose metabolic pathway, Oncotarget, 7, 87361-87372, https://doi.org/10.18632/oncotarget.13571.
  115. Xu, C., Zhou, J., Zhang, X., Kang, X., Liu, S., Song, M., Chang, C., Lin, Y., and Wang, Y. (2024) N(6)-methyladenosine-modified circ_104797 sustains cisplatin resistance in bladder cancer through acting as RNA sponges, Cell. Mol. Biol. Lett., 29, 28, https://doi.org/10.1186/s11658-024-00543-3.
  116. Priem, D., Devos, M., Druwé, S., Martens, A., Slowicka, K., Ting, A. T., Pasparakis, M., Declercq, W., Vandenabeele, P., van Loo, G., and Bertrand, M. J. M. (2019) A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms, Cell Death Dis., 10, 692, https://doi.org/10.1038/s41419-019-1937-y.
  117. Wei, W., Sun, J., Zhang, H., Xiao, X., Huang, C., Wang, L., Zhong, H., Jiang, Y., Zhang, X., and Jiang, G. (2021) Circ0008399 interaction with WTAP promotes assembly and activity of the m⁶A methyltransferase complex and promotes cisplatin resistance in bladder cancer, Cancer Res., 81, 6142-6156, https://doi.org/10.1158/0008-5472.CAN-21-1518.
  118. Yu, H., Zhuang, J., Zhou, Z., Song, Q., Lv, J., Yang, X., Yang, H., and Lu, Q. (2024) METTL16 suppressed the proliferation and cisplatin-chemoresistance of bladder cancer by degrading PMEPA1 mRNA in a m⁶A manner through autophagy pathway, Int. J. Biol. Sci., 20, 1471-1491, https://doi.org/10.7150/ijbs.86719.
  119. Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons, Cell, 149, 1635-1646, https://doi.org/10.1016/j.cell.2012.05.003.
  120. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R., and Rechavi, G. (2012) Topology of the human and mouse m⁶A RNA methylomes revealed by m⁶A-seq, Nature, 485, 201-206, https://doi.org/10.1038/nature11112.
  121. Bayoumi, M., and Munir, M. (2021) Evolutionary conservation of the DRACH signatures of potential N6-methyladenosine (m⁶A) sites among influenza A viruses, Sci. Rep., 11, 4548, https://doi.org/10.1038/s41598-021-84007-0.
  122. Liu, Z., and Zhang, J. (2018) Most m⁶A RNA modifications in protein-coding regions are evolutionarily unconserved and likely nonfunctional, Mol. Biol. Evol., 35, 666-675, https://doi.org/10.1093/molbev/msx320.
  123. An, M., Wang, H., and Zhu, Y. (2020) Mutations in m⁶A consensus motifs are suppressed in the m⁶A modified genes in human cancer cells, PLoS One, 15, e0236882, https://doi.org/10.1371/journal.pone.0236882.
  124. Deng, N., Zhou, H., Fan, H., and Yuan, Y. (2017) Single nucleotide polymorphisms and cancer susceptibility, Oncotarget, 8, 110635-110649, https://doi.org/10.18632/oncotarget.22372.
  125. Lv, J., Song, Q., Bai, K., Han, J., Yu, H., Li, K., Zhuang, J., Yang, X., Yang, H., and Lu, Q. (2022) N6-methyladenosine-related single-nucleotide polymorphism analyses identify oncogene RNFT2 in bladder cancer, Cancer Cell Int., 22, 301, https://doi.org/10.1186/s12935-022-02701-z.
  126. Zhang, C., Tunes, L., Hsieh, M.-H., Wang, P., Kumar, A., Khadgi, B. B., Yang, Y., Doxtader, K. A., Herrell, E., Koczy, O., Setlem, R., Zhang, X., Evers, B., Wang, Y., Xing, C., Zhu, H., and Nam, Y. (2023) Cancer mutations rewire the RNA methylation specificity of METTL3-METTL14, bioRxiv Prepr. Serv. Biol., 10, eads4750, https://doi.org/10.1101/2023.03.16.532618.
  127. Waldbillig, F., Bormann, F., Neuberger, M., Ellinger, J., Erben, P., Kriegmair, M. C., Michel, M. S., Nuhn, P., and Nientiedt, M. (2023) An m⁶A-driven prognostic marker panel for renal cell carcinoma based on the first transcriptome-wide m⁶A-seq, Diagnostics, 13, 823, https://doi.org/10.3390/diagnostics13050823.
  128. Zhang, G., Yang, J., Fang, J., Yu, R., Yin, Z., Chen, G., Tai, P., He, D., Cao, K., and Jiang, J. (2024) Development of an m⁶A subtype classifier to guide precision therapy for patients with bladder cancer, J. Cancer, 15, 5204-5217, https://doi.org/10.7150/jca.99483.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oncogenic effect of m⁶A-modification of RNA in bladder cancer biology. a – m⁶A-methylation of ITGA6 mRNA in bladder cancer, associated with METTL3 activity and the “reader” proteins YTHDF1 and YTHDF3, enhances transcript translation and promotes tumor progression [55]. b – The METTL3–m⁶A–CDCP1 pathway regulates CDCP1 expression and translation in bladder cancer, promoting tumor progression, migration, and metastasis [63]. c – FTO demethylase (m⁶A “eraser” enzyme) regulates the expression and stability of PTPN6, encoding a key phosphatase involved in signaling pathways and cancer progression, indicating its potential use as a prognostic biomarker in bladder cancer [42]. g – In BC, NRF2 promotes tumor growth and development of resistance to ferroptosis via m⁶A-mediated transcript stabilization with the participation of WTAP and YTHDF1 [92]. d – FTO plays an oncogenic role in BC by reducing the level of m⁶A-methylation of MALAT1 lncRNA, increasing its stability and expression levels. This, in turn, stimulates tumor growth via the miR-384 “sponge” mechanism and an increase in MAL2 levels; higher FTO expression correlates with more advanced stages of BC [43]. e – IGF2BP2 stabilizes the m⁶A-modified NRP1 transcript, which leads to polarization of macrophages to the M2 type and promotes BC progression [46]. g – FTO enhances cancer progression by regulating pri-miR-576 maturation in a m⁶A-dependent manner, affecting the miR-576–CDK6 pathway; increased FTO expression correlates with more advanced stages of the tumor process [44]. h – In cancer, METTL3 increases miRNA-221/222 maturation through m⁶A modification, enhancing cancer progression by inhibiting the tumor suppressor gene PTEN [99]. i – METTL14 promotes cancer progression by increasing lncDBET expression, which activates the PPAR signaling pathway and alters lipid metabolism through interaction with FABP5 [103]. k – In cancer, m⁶A-methylated circPSMA7 is stabilized by IGF2BP3, enhancing MAPK1 mRNA stability and promoting tumor progression; miR-128-3p is able to reverse this effect [102]. l – IGF2BP3 interacts with HMGB1 via m⁶A modification, influencing the immune microenvironment in BC and the efficacy of immunotherapy; high levels of IGF2BP3 are associated with poor prognosis [47]

Download (2MB)
3. Fig. 2. Anti-oncogenic effect of m⁶A-modification of RNA in bladder cancer biology. a – The METTL14–m⁶A–NOTCH1 pathway in bladder cancer suppresses tumor cell self-renewal [71]. b – SYTL1 enhances the antitumor immune response through NK cell activation, but its expression is reduced due to WTAP-dependent m⁶A-methylation, which leads to transcript degradation via YTHDF2 [81]. c – METTL3-dependent m⁶A-modification of tumor suppressor factor SETD7 mRNA, recognized by YTHDF2, leads to mRNA degradation [80]. d – KLF4 (tumor suppressor) is weakly expressed in bladder cancer cells and is associated with low survival and the risk of relapse; when overexpressed, KLF4 inhibits cell proliferation and induces cell cycle arrest in the G1 phase. METTL3 carries out m⁶A-methylation of KLF4 mRNA, which leads to mRNA degradation via the YTHDF2 reader protein [80]. d – LINC01106 stabilizes DAB1 mRNA, which is associated with more favorable prognoses in BC, while miR-3148 inhibits DAB1 mRNA translation, which is associated with unfavorable outcomes in BC. CRISPR-mediated hypermethylation of LINC01106 increases its affinity for DAB1 mRNA [101]

Download (1MB)
4. Fig. 3. Scheme of personalized treatment strategy based on profiling of m⁶A RNA modifications. a – Obtaining biomaterial from patients with bladder cancer. Identification of m⁶A with assessment of m⁶A methylation patterns. b – Division of patients into different subgroups depending on m⁶A profiles. c – Compilation of m⁶A patient map with assessment of the stage and characteristics of the disease, the possibility of using therapeutic approaches taking into account drug resistance profiles, with prognosis of disease progression and patient survival based on m⁶A profiles. d – Development of a personalized treatment strategy for patients based on multiparametric analysis of m⁶A profiles

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences