Diagnostic and prognostic potential of circulating micrornas miR-1301-3p, miR-106A-5p, miR-129-5p, miR-3613-3p, miR-647 in gastric cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Gastric cancer (GC) is one of the most common malignant tumors worldwide and ranks fifth in the structure of cancer mortality. MicroRNAs are involved in the pathogenesis and progression of GC as epigenetic factors, and are considered as potential noninvasive markers. We selected microRNAs involved in the regulation of epigenetic mechanisms in GC (miR-1301-3p, miR-106a-5p, miR-129-5p, miR-3613-3p, miR-647) and analyzed their expression in plasma of GC patients. To assess their diagnostic and prognostic potential, we estimated correlations of differential expression with the clinical and pathological characteristics of GC tumors. The study included 65 plasma samples from GC patients and 48 plasma samples obtained from individuals without tumor lesions, which were used as a control group. The expression was analyzed by using the reverse transcription polymerase chain reaction (RT-PCR) method. When comparing the expression levels of selected microRNAs in the plasma of GC patients and the control group, significant differences were found for miR-1301-3p (p = 0.04), miR-106a-5p (p = 0.029), miR-129-5p (p < 0.0001), miR-647 (p < 0.0001). MiR-129-5p expression was significantly associated with the prevalence of a primary tumor (p = 0.002), with the development of metastases to regional lymph nodes (p = 0.003) and distant metastases (p = 0.003), as well as a late clinical stage (p = 0.003). There was a significant correlation between miR-3613-3p expression and the clinical stage of GC (p = 0.049). ROC analysis revealed that combining miR-106a-5p, miR-129-5p, miR-1301-3p and miR-647 improves the diagnostic and prognostic properties of a potential panel of markers.

Full Text

Restricted Access

About the authors

I. V. Bure

I. M. Sechenov First Moscow State Medical University (Sechenov University); Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: bureira@mail.ru
Russian Federation, 119435 Moscow; 125993 Moscow

E. A. Vetchinkina

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Email: bureira@mail.ru
Russian Federation, 119435 Moscow

A. I. Kalinkin

Research Centre for Medical Genetics

Email: bureira@mail.ru
Russian Federation, 115478 Moscow

E. B. Kuznetsova

I. M. Sechenov First Moscow State Medical University (Sechenov University); Research Centre for Medical Genetics

Email: bureira@mail.ru
Russian Federation, 119435 Moscow; 115478 Moscow

A. E. Kiseleva

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Email: bureira@mail.ru
Russian Federation, 119435 Moscow

E. A. Alekseeva

I. M. Sechenov First Moscow State Medical University (Sechenov University); Research Centre for Medical Genetics

Email: bureira@mail.ru
Russian Federation, 119435 Moscow; 115478 Moscow

N. S. Esetov

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Email: bureira@mail.ru
Russian Federation, 119435 Moscow

M. V. Nemtsova

I. M. Sechenov First Moscow State Medical University (Sechenov University); Research Centre for Medical Genetics

Email: bureira@mail.ru
Russian Federation, 119435 Moscow; 115478 Moscow

References

  1. Szelenberger, R., Kacprzak, M., Saluk-Bijak, J., Zielinska, M., and Bijak, M. (2019) Plasma microRNA as a novel diagnostic, Clin. Chim. Acta, 499, 98-107, https://doi.org/10.1016/j.cca.2019.09.005.
  2. Aalami, A. H., Aalami, F., and Sahebkar, A. (2023) Gastric cancer and circulating microRNAs: an updated systematic review and diagnostic meta-analysis, Curr. Med. Chem., 30, 3798-3814, https://doi.org/10.2174/ 0929867330666221121155905.
  3. Matsuzaki, J., and Ochiya, T. (2017) Circulating microRNAs and extracellular vesicles as potential cancer biomarkers: a systematic review, Int. J. Clin. Oncol., 22, 413-420, https://doi.org/10.1007/s10147-017-1104-3.
  4. Bure, I. V., Mikhaylenko, D. S., Kuznetsova, E. B., Alekseeva, E. A., Bondareva, K. I., Kalinkin, A. I., Lukashev, A. N., Tarasov, V. V., Zamyatnin, A. A., and Nemtsova, M. V. (2020) Analysis of miRNA expression in patients with rheumatoid arthritis during olokizumab treatment, J. Pers Med., 10, E205, https://doi.org/10.3390/ jpm10040205.
  5. Venkatesan, G., Wan Ab Rahman, W. S., Shahidan, W. N. S., Iberahim, S., and Muhd Besari Hashim, A. B. (2023) Plasma-derived exosomal miRNA as potential biomarker for diagnosis and prognosis of vector-borne diseases: a review, Front. Microbiol., 14, 1097173, https://doi.org/10.3389/fmicb.2023.1097173.
  6. Raczkowska, J., Bielska, A., Krętowski, A., and Niemira, M. (2023) Extracellular circulating miRNAs as potential non-invasive biomarkers in non-small cell lung cancer patients, Front. Oncol., 13, 1209299, https://doi.org/10.3389/fonc.2023.1209299.
  7. Chakrabortty, A., Patton, D. J., Smith, B. F., and Agarwal, P. (2023) miRNAs: potential as biomarkers and therapeutic targets for cancer, Genes (Basel), 14, 1375, https://doi.org/10.3390/genes14071375.
  8. Nemtsova, M. V., Kalinkin, A. I., Kuznetsova, E. B., Bure, I. V., Alekseeva, E. A., Bykov, I. I., Khorobrykh, T. V., Mikhaylenko, D. S., Tanas, A. S., and Strelnikov, V. V. (2021) Mutations in epigenetic regulation genes in gastric cancer, Cancers, 13, 4586, https://doi.org/10.3390/cancers13184586.
  9. Tokar, T., Pastrello, C., Rossos, A. E. M., Abovsky, M., Hauschild, A.-C., Tsay, M., Lu, R., and Jurisica, I. (2018) mirDIP 4.1-integrative database of human microRNA target predictions, Nucleic Acids Res., 46, D360-D370, https://doi.org/10.1093/nar/gkx1144.
  10. Wang, F., Xie, Z., Zhang, N., Ding, H., Xiong, K., Guo, L., Huang, H., and Wen, Z. (2022) Has_circ_0008583 modulates hepatocellular carcinoma progression through the miR-1301-3p/METTL3 pathway, Bioengineered, 13, 1185-1197, https://doi.org/10.1080/21655979.2021.2017579.
  11. Yang, F., Wang, H., Yan, B., Li, T., Min, L., Chen, E., and Yang, J. (2021) Decreased level of miR-1301 promotes colorectal cancer progression via activation of STAT3 pathway, Biol. Chem., 402, 805-813, https://doi.org/10.1515/hsz-2020-0301.
  12. Xu, J., Sang, N., Zhao, J., He, W., Zhang, N., and Li, X. (2022) Knockdown of circ_0067934 inhibits gastric cancer cell proliferation, migration and invasion via the miR-1301-3p/KIF23 axis, Mol. Med. Rep., 25, 202, https://doi.org/10.3892/mmr.2022.12718.
  13. Yu, L., Gao, Y., Ji, B., Feng, Z., Li, T., and Luan, W. (2021) CTCF-induced upregulation of LINC01207 promotes gastric cancer progression via miR-1301-3p/PODXL axis, Dig. Liver Dis., 53, 486-495, https://doi.org/10.1016/ j.dld.2020.12.006.
  14. Wang, Z., Liu, M., Zhu, H., Zhang, W., He, S., Hu, C., Quan, L., Bai, J., and Xu, N. (2013) miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS, Mol. Carcinog., 52, 634-646, https://doi.org/10.1002/mc.21899.
  15. Wang, N., Wang, L., Yang, Y., Gong, L., Xiao, B., and Liu, X. (2017) A serum exosomal microRNA panel as a potential biomarker test for gastric cancer, Biochem. Biophys. Res. Commun., 493, 1322-1328, https://doi.org/10.1016/ j.bbrc.2017.10.003.
  16. Luo, B., Kang, N., Chen, Y., Liu, L., and Zhang, Y. (2018) Oncogene miR-106a promotes proliferation and metastasis of prostate cancer cells by directly targeting PTEN in vivo and in vitro, Minerva Med., 109, 24-30, https://doi.org/10.23736/S0026-4806.17.05342-3.
  17. Cui, X., Wang, X., Zhou, X., Jia, J., Chen, H., and Zhao, W. (2020) miR-106a Regulates Cell Proliferation and Autophagy by Targeting LKB1 in HPV-16-Associated Cervical cancer, Mol. Cancer Res., 18, 1129-1141, https://doi.org/10.1158/1541-7786.MCR-19-1114.
  18. Chen, Y., Huang, T., Yang, X., Liu, C., Li, P., Wang, Z., and Zhi, S. (2018) MicroRNA-106a regulates the proliferation and invasion of human osteosarcoma cells by targeting VNN2, Oncol. Rep., 40, 2251-2259, https://doi.org/10.3892/or.2018.6601.
  19. Meng, R., Fang, J., Yu, Y., Hou, L. K., Chi, J. R., Chen, A. X., Zhao, Y., and Cao, X. C. (2018) miR-129-5p suppresses breast cancer proliferation by targeting CBX4, Neoplasma, 65, 572-578, https://doi.org/10.4149/neo_2018_170814N530.
  20. Wu, Q., Meng, W.-Y., Jie, Y., and Zhao, H. (2018) LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis, J. Cell Physiol., 233, 6750-6757, https://doi.org/10.1002/jcp.26383.
  21. Yang, J. (2022) Expression of miR-129 in patients with gastric cardia adenocarcinoma and prognostic analysis, Clin Lab., 68, https://doi.org/10.7754/Clin.Lab.2021.210338.
  22. Ye, X., Qiu, R., He, X., Hu, Z., Zheng, F., Huang, X., Xie, X., Chen, F., Ou, H., and Lin, G. (2022) miR-647 inhibits hepatocellular carcinoma cell progression by targeting protein tyrosine phosphatase receptor type F, Bioengineered, 13, 1090-1102, https://doi.org/10.1080/21655979.2021.2017628.
  23. Liu, S., Qu, D., Li, W., He, C., Li, S., Wu, G., Zhao, Q., Shen, L., Zhang, J., & Zheng, J. (2022) [Corrigendum] miR-647 and miR-1914 promote cancer progression equivalently by downregulating nuclear factor IX in colorectal cancer, Mol. Med. Rep., 25, 197, https://doi.org/10.3892/mmr.2022.12713.
  24. Zhang, X., Zhang, M., Wang, G., Tian, Y., and He, X. (2018) Tumor promoter role of miR-647 in gastric cancer via repression of TP73, Mol. Med. Rep., 18, 3744-3750, https://doi.org/10.3892/mmr.2018.9358.
  25. Castro-Magdonel, B. E., Orjuela, M., Alvarez-Suarez, D. E., Camacho, J., Cabrera-Muñoz, L., Sadowinski-Pine, S., Medina-Sanson, A., Lara-Molina, C., García-Vega, D., Vázquez, Y., Durán-Figueroa, N., Orozco-Romero, M. J., Hernández-Ángeles, A., and Ponce-Castañeda, M. V. (2020) Circulating miRNome detection analysis reveals 537 miRNAS in plasma, 625 in extracellular vesicles and a discriminant plasma signature of 19 miRNAs in children with retinoblastoma from which 14 are also detected in corresponding primary tumors, PLoS One, 15, e0231394, https://doi.org/10.1371/journal.pone.0231394.
  26. Xiang, F., and Xu, X. (2022) CirRNA F-circEA-2a suppresses the role of miR-3613-3p in colorectal cancer by direct sponging and predicts poor survival, Cancer Manag. Res., 14, 1825-1833, https://doi.org/10.2147/ CMAR.S351518.
  27. Bibi, F., Naseer, M. I., Alvi, S. A., Yasir, M., Jiman-Fatani, A. A., Sawan, A., Abuzenadah, A. M., Al-Qahtani, M. H., & Azhar, E. I. (2016) microRNA analysis of gastric cancer patients from Saudi Arabian population, BMC Genomics, 17, 751, https://doi.org/10.1186/s12864-016-3090-7.
  28. Polyakova, E. A., Zaraiskii, M. I., Mikhaylov, E. N., Baranova, E. I., Galagudza, M. M., and Shlyakhto, E. V. (2021) Association of myocardial and serum miRNA expression patterns with the presence and extent of coronary artery disease: a cross-sectional study, Int. J. Cardiol., 322, 9-15, https://doi.org/10.1016/j.ijcard.2020.08.043.
  29. Yerukala Sathipati, S., Aimalla, N., Tsai, M.-J., Carter, T., Jeong, S., Wen, Z., Shukla, S. K., Sharma, R., and Ho, S.-Y. (2023) Prognostic microRNA signature for estimating survival in patients with hepatocellular carcinoma, Carcinogenesis, 44, 650-661, https://doi.org/10.1093/carcin/bgad062.
  30. Zhu, M., Zhang, N., He, S., Yan, R., and Zhang, J. (2016) MicroRNA-106a functions as an oncogene in human gastric cancer and contributes to proliferation and metastasis in vitro and in vivo, Clin. Exp. Metastasis, 33, 509-519, https://doi.org/10.1007/s10585-016-9795-9.
  31. Hou, X., Zhang, M., and Qiao, H. (2015) Diagnostic significance of miR-106a in gastric cancer, Int. J. Clin. Exp. Pathol., 8, 13096-13101.
  32. Zhu, M., Zhang, N., Lu, X., and He, S. (2018) Negative regulation of Kruppel-like factor 4 on microRNA-106a at upstream transcriptional level and the role in gastric cancer metastasis, Dig. Dis. Sci., 63, 2604-2616, https://doi.org/10.1007/s10620-018-5143-z.
  33. Jiang, Z., Wang, H., Li, Y., Hou, Z., Ma, N., Chen, W., et al. (2016) MiR-129-5p is down-regulated and involved in migration and invasion of gastric cancer cells by targeting interleukin-8, Neoplasma, 63, 673-680, https://doi.org/10.4149/neo_2016_503.
  34. Feng, J., Guo, J., Wang, J.-P., and Chai, B.-F. (2020) MiR-129-5p inhibits proliferation of gastric cancer cells through targeted inhibition on HMGB1 expression, Eur. Rev. Med. Pharmacol. Sci., 24, 3665-3673, https://doi.org/10.26355/eurrev_202004_20829.
  35. Wang, Q., and Yu, J. (2018) MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1, Biochem. Cell Biol., 96, 19-25, https://doi.org/10.1139/bcb-2016-0254.
  36. Yu, X., Song, H., Xia, T., Han, S., Xiao, B., Luo, L., Xi, Y., and Guo, J. (2013) Growth inhibitory effects of three miR-129 family members on gastric cancer, Gene, 532, 87-93, https://doi.org/10.1016/j.gene.2013.09.048.
  37. Liu, Z., Sun, J., Wang, X., and Cao, Z. (2021) MicroRNA-129-5p promotes proliferation and metastasis of hepatocellular carcinoma by regulating the BMP2 gene, Exp. Ther. Med., 21, 257, https://doi.org/10.3892/etm. 2021.9688.
  38. Liu, Q., Jiang, J., Fu, Y., Liu, T., Yu, Y., and Zhang, X. (2018) MiR-129-5p functions as a tumor suppressor in gastric cancer progression through targeting ADAM9, Biomed. Pharmacother., 105, 420-427, https://doi.org/10.1016/ j.biopha.2018.05.105.
  39. Ye, G., Huang, K., Yu, J., Zhao, L., Zhu, X., Yang, Q., Li, W., Jiang, Y., Zhuang, B., Liu, H., Shen, Z., Wang, D., Yan, L., Zhang, L., Zhou, H., Hu, Y., Deng, H., Liu, H., Li, G., and Qi, X. (2017) MicroRNA-647 targets SRF-MYH9 axis to suppress invasion and metastasis of gastric cancer, Theranostics, 7, 3338-3353, https://doi.org/10.7150/thno.20512.
  40. Yang, B., Jing, C., Wang, J., Guo, X., Chen, Y., Xu, R., Peng, L., Liu, J., and Li, L. (2014) Identification of microRNAs associated with lymphangiogenesis in human gastric cancer, Clin. Transl. Oncol., 16, 374-379, https://doi.org/ 10.1007/s12094-013-1081-6.
  41. Vetchinkina, E. A., Kalinkin, A. I., Kuznetsova, E. B., Kiseleva, A. E., Alekseeva, E. A., Nemtsova, M. V., and Bure, I. V. (2022) Diagnostic and prognostic value of long non-coding RNA PROX1-AS1 and miR-647 expression in gastric cancer, Usp. Mol. Onkol., 9, 50-60, https://doi.org/10.17650/2313-805X-2022-9-4-50-60.
  42. Chen, C., Pan, Y., Bai, L., Chen, H., Duan, Z., Si, Q., Zhu, R., Chuang, T.-H., and Luo, Y. (2021) MicroRNA-3613-3p functions as a tumor suppressor and represents a novel therapeutic target in breast cancer, Breast Cancer Res., 23, 12, https://doi.org/10.1186/s13058-021-01389-9.
  43. Nowak, I., Boratyn, E., Durbas, M., Horwacik, I., and Rokita, H. (2018) Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells, Int. J. Oncol., 53, 1787-1799, https://doi.org/10.3892/ijo.2018.4509.
  44. Xiong, D.-D., Lv, J., Wei, K.-L., Feng, Z.-B., Chen, J.-T., Liu, K.-C., Chen, G., and Luo, D.-Z. (2017) A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: an integrated study of 1,110 cases, Oncol. Rep., 37, 3297-3304, https://doi.org/10.3892/or.2017.5600.
  45. Silva, C. M. S., Barros-Filho, M. C., Wong, D. V. T., Mello, J. B. H., Nobre, L. M. S., Wanderley, C. W. S., Lucetti, L. T., Muniz, H. A., Paiva, I. K. D., Kuasne, H., Ferreira, D. P. P., Cunha, M. P. S. S., Hirth, C. G., Silva, P. G. B., Sant’Ana, R. O., Souza, M. H. L. P., Quetz, J. S., Rogatto, S. R., and Lima-Junior, R. C. P. (2021) Circulating let-7e-5p, miR-106a-5p, miR-28-3p, and miR-542-5p as a promising microRNA signature for the detection of colorectal cancer, Cancers (Basel), 13, 1493, https://doi.org/10.3390/cancers13071493.
  46. Luo, D., Fan, H., Ma, X., Yang, C., He, Y., Ge, Y., Jiang, M., Xu, Z., and Yang, L. (2021) miR-1301-3p promotes cell proliferation and facilitates cell cycle progression via targeting SIRT1 in gastric cancer, Front. Oncol., 11, 664242, https://doi.org/10.3389/fonc.2021.664242.
  47. Peng, Q., Shen, Y., Lin, K., Zou, L., Shen, Y., and Zhu, Y. (2018) Comprehensive and integrative analysis identifies microRNA-106 as a novel non-invasive biomarker for detection of gastric cancer, J. Transl. Med., 16, 127, https://doi.org/10.1186/s12967-018-1510-y.
  48. Yu, X., Luo, L., Wu, Y., Yu, X., Liu, Y., Yu, X., Zhao, X., Zhang, X., Cui, L., Ye, G., Le, Y., and Guo, J. (2013) Gastric juice miR-129 as a potential biomarker for screening gastric cancer, Med. Oncol., 30, 365, https://doi.org/ 10.1007/s12032-012-0365-y.
  49. Ma, H., Wang, P., Li, Y., Yang, Y., Zhan, S., and Gao, Y. (2019) Decreased expression of serum miR-647 is associated with poor prognosis in gastric cancer, Int. J. Clin. Exp. Pathol., 12, 2552-2558.
  50. Qiao, D.-H., He, X.-M., Yang, H., Zhou, Y., Deng, X., Cheng, L., and Zhou, X. (2021) miR-1301-3p suppresses tumor growth by downregulating PCNA in thyroid papillary cancer, Am. J. Otolaryngol., 42, 102920, https://doi.org/10.1016/j.amjoto.2021.102920.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The level of miR-1301-3p (a), miR-106a-5p (b), miR-129-5p (c), miR-647 (d) and miR-3613-3p (e) representation in plasma samples of patients with gastric cancer relative to plasma samples of healthy controls. Statistically significant p values are marked with an asterisk.

Download (1MB)
3. Fig. 2. Associations between miR-106a-5p, miR-129-5p, miR-3613-3p, miR-1301-3p, miR-647 in groups of patients with gastric cancer and healthy donors, as well as combinations of microRNAs that showed the best result (miR-129-5p, miR-1301-3p, miR-647). Receiver operating characteristic curves (ROC curves)

Download (641KB)
4. Fig. 3. Associations of miR-106a-5p, miR-129-5p, miR-3613-3p, miR-1301-3p, miR-647 with clinicopathological characteristics of patients with GC, as well as combinations of microRNAs that showed the best result: miR-106a-5p, miR-129-5p, miR-647 with the prevalence of the primary tumor (a), miR-106a-5p, miR-129-5p, miR-647 with the development of metastases to regional lymph nodes (b), miR-106a-5p, miR-129-5p with the development of distant metastases (c), miR-106a-5p, miR-647 with signet ring cells (d); miR-106a-5p, miR-129-5p, miR-647 with clinical stage of disease (d). Receiver operating characteristic curves (ROC curves)

Download (3MB)
5. Fig. 4. Target genes for selected microRNAs involved in epigenetic regulation (genes associated with DNA methylation are highlighted in red, genes regulating histone protein modifications are highlighted in blue, and genes regulating chromatin remodeling are highlighted in green)

Download (1MB)
6. П1 Applications
Download (25KB)

Copyright (c) 2025 Russian Academy of Sciences