Transcriptional biomarkers in diagnostics of genetic diseases: possibilities, problems and prospects of application

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Quantitative analysis of gene transcription is widely used in various fields of biology, and in medicine it is used for diagnostics and profiling of genetic diseases. Recently, transcriptome studies using large-scale next-generation sequencing have become very popular. Transcriptome studies allow us to establish which cellular processes are active at a given time, to identify transcriptome dynamics in various tissues or conditions, for example, during ontogenesis or physiological adaptation, and to identify differentially expressed genes in case of disease. A significant change in the transcription level of one or more genes in a pathological condition may be sufficient for diagnosis, that is, it can serve as a transcriptional biomarker of the disease. However, in some cases, a change in the transcription level can be an indicator of mutations, including those leading to splicing disorders, transcriptional activity of mobile elements and pseudogenes. The review considers cases in which the transcription level may be useful for identifying the genetic causes of a disease, and discusses the issues that should be taken into account when using transcription as a diagnostic marker. In the future, it can be expected that specialized target panels based on transcription analysis will be used not only as a diagnostic and prognostic tool, but also as a predictor of structural abnormalities in the genome, which will contribute to the development of new effective strategies for the treatment of genetic diseases.

Full Text

Restricted Access

About the authors

L. N. Nefedova

Lomonosov Moscow State University

Author for correspondence.
Email: nefedova@mail.bio.msu.ru

Faculty of Biology

 

Russian Federation, 119991 Moscow

T. N. Krasnova

Lomonosov Moscow State University

Email: nefedova@mail.bio.msu.ru

Faculty of Fundamental Medicine

Russian Federation, 119991 Moscow

References

  1. Haendel, M., Vasilevsky, N., Unni, D., Bologa, C., Harris, N., Rehm, H., Hamosh, A., Baynam, G., Groza, T., McMurry, J., Dawkins, H., Rath, A., Thaxton, C., Bocci, G., Joachimiak, M. P., Köhler, S., Robinson, P. N., Mungall, C., and Oprea, T. I. (2020) How many rare diseases are there? Nat. Rev. Drug Discov., 19, 77-78, https://doi.org/10.1038/d41573-019-00180-y.
  2. Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Hussain, M., Phillips, A. D., and Cooper, D. N. (2017) The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies, Hum. Genet., 136, 665-677, https://doi.org/10.1007/s00439-017-1779-6.
  3. Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Marchini J. L., McCarthy, S., McVean, G. A., and Abecasis, G. R. (2015) A global reference for human genetic variation, Nature, 526, 68-74, https://doi.org/10.1038/nature15393.
  4. Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., O’Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., Tukiainen, T., Birnbaum, D. P., Kosmicki, J. A., Duncan, L. E., Estrada, K., Zhao, F., Zou, J., Pierce-Hoffman, E., Berghout, J., Cooper, D. N., Deflaux, N., DePristo, M., Do, R., Flannick, J., Fromer, M., et al. (2016) Analysis of protein-coding genetic variation in 60,706 humans, Nature, 536, 285-291, https://doi.org/10.1038/nature19057.
  5. Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., and Posthuma, D. (2021) Genome-wide association studies, Nat. Rev. Methods Primers, 1, 59, https://doi.org/ 10.1038/s43586-021-00056-9.
  6. Wang, Z., Gerstein, M., and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics, Nat. Rev. Genet., 10, 57-63, https://doi.org/10.1038/nrg2484.
  7. Pattee, J., Zhan, X., Xiao, G., and Pan, W. (2020) Integrating germline and somatic genetics to identify genes associated with lung cancer, Genet. Epidemiol., 44, 233-247, https://doi.org/10.1002/gepi.22275.
  8. Høie, M. H., Cagiada, M., Beck Frederiksen, A. H., Stein, A., and Lindorff-Larsen, K. (2022) Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation, Cell Rep., 38, 110207, https://doi.org/10.1016/j.celrep.2021.110207.
  9. Mort, M., Ivanov, D., Cooper, D. N., and Chuzhanova, N. A. (2008) A meta-analysis of nonsense mutations causing human genetic disease, Hum. Mutat., 29, 1037-1047, https://doi.org/10.1002/humu.20763.
  10. Han, X., Wei, Y., Wang, H., Wang, F., Ju, Z., and Li, T. (2018) Nonsense-mediated mRNA decay: a ‘nonsense’ pathway makes sense in stem cell biology, Nucleic Acids Res., 46, 1038-1051, https://doi.org/10.1093/nar/gkx1272.
  11. Sanderlin, E. J., Keenan, M. M., Mense, M., Revenko, A. S., Monia, B. P., Guo, S., and Huang, L. (2022) CFTR mRNAs with nonsense codons are degraded by the SMG6-mediated endonucleolytic decay pathway, Nat. Commun., 13, 2344, https://doi.org/10.1038/s41467-022-29935-9.
  12. Spinner, N. B., Colliton, R. P., Crosnier, C., Krantz, I. D., Hadchouel, M., and Meunier-Rotival, M. (2001) Jagged mutations in Alagille syndrome, Hum. Mutat., 17, 18-33, https://doi.org/10.1002/1098-1004(2001)17:1<18:: AID-HUMU3>3.0.CO,2-T.
  13. Van Bon, B., Hoischen, A., Hehir-Kwa, J., De Brouwer, A., Ruivenkamp, C., Gijsbers, A. C., Marcelis, C. L, de Leeuw, N., Veltman, J. A., Brunner, H. G., and de Vries, B. B. (2011) Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly, Clin. Genet., 79, 296-299, https://doi.org/10.1111/j.1399-0004. 2010.01544.x.
  14. Brown, L. Y. (2001) Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination, Hum. Mol. Genet., 10, 791-796, https://doi.org/10.1093/hmg/10.8.791.
  15. Lindeboom, R. G. H., Supek, F., and Lehner, B. (2016) The rules and impact of nonsense-mediated mRNA decay in human cancers, Nat. Genet., 48, 1112-1118, https://doi.org/10.1038/ng.3664.
  16. Birchler, J. A., and Auger, D. L. (2013) Biological Consequences of Dosage Dependent Gene Regulation in Multicellular Eukaryotes, in Madame Curie Bioscience Database, Landes Bioscience.
  17. Eisenberg, E., and Levanon, E. Y. (2013) Human housekeeping genes, revisited, Trends Genet., 29, 569-574, https://doi.org/10.1016/j.tig.2013.05.010.
  18. Hundt, N., Preller, M., Swolski, O., Ang, A. M., Mannherz, H. G., Manstein, D. J., and Müller, M. (2014) Molecular mechanisms of disease-related human β-actin mutations p.R183W and p.E364K, FEBS J., 281, 5279-5291, https://doi.org/10.1111/febs.13068.
  19. Li, Y., Zhang, Y., Li, X., Yi, S., and Xu, J. (2019) Gain-of-function mutations: an emerging advantage for cancer biology, Trends Biochem. Sci., 44, 659-674, https://doi.org/10.1016/j.tibs.2019.03.009.
  20. Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T., Stehling-Sun, S., Johnson, A. K., Canfield, T. K., Giste, E., Diegel, M., Bates, D., Hansen, R. S., Neph, S., Sabo, P. J., Heimfeld, S., Raubitschek, A., et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA, Science, 337, 1190-1195, https://doi.org/10.1126/science.1222794.
  21. Khurana, E., Fu, Y., Chakravarty, D., Demichelis, F., Rubin, M. A., and Gerstein, M. (2016) Role of non-coding sequence variants in cancer, Nat. Rev. Genet., 17, 93-108, https://doi.org/10.1038/nrg.2015.17.
  22. Fuxman Bass, J. I., Sahni, N., Shrestha, S., Garcia-Gonzalez, A., Mori, A., Bhat, N., Yi, S., Hill, D. E., Vidal, M., and Walhout, A. J. M. (2015) Human gene-centered transcription factor networks for enhancers and disease variants, Cell, 161, 661-673, https://doi.org/10.1016/j.cell.2015.03.003.
  23. Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L., and Garraway, L. A. (2013) Highly recurrent TERT promoter mutations in human melanoma, Science, 339, 957-959, https://doi.org/10.1126/science.1229259.
  24. Zimmerman, O., Olbrich, P., Freeman, A.F., Rosen, L.B., Uzel, G., Zerbe, C. S., Rosenzweig, S. D., Kuehn, H. S., Holmes, K. L., Stephany, D., Ding, L., Sampaio, E. P., Hsu, A. P., and Holland, S. M. (2019) STAT1 gain-of-function mutations cause high total STAT1 levels with normal dephosphorylation, Front. Immunol., 10, 1433, https://doi.org/10.3389/fimmu.2019.01433.
  25. Kvon, E. Z., Waymack, R., Gad, M., and Wunderlich, Z. (2021) Enhancer redundancy in development and disease, Nat. Rev. Genet., 22, 337, https://doi.org/10.1038/s41576-021-00361-9.
  26. Sanyal, A., Lajoie, B. R., Jain, G., and Dekker, J. (2012) The long-range interaction landscape of gene promoters, Nature, 489, 109-113, https://doi.org/10.1038/nature11279.
  27. Jin, F., Li, Y., Dixon, J. R., Selvaraj, S., Ye, Z., Lee, A. Y., Yen, C. A., Schmitt, A. D., Espinoza, C. A., and Ren, B. (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells, Nature, 503, 290-294, https://doi.org/10.1038/nature12644.
  28. Flores, M. A., and Ovcharenko, I. (2018) Enhancer reprogramming in mammalian genomes, BMC Bioinformatics, 19, 316, https://doi.org/10.1186/s12859-018-2343-7.
  29. Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H., and Young, R. A. (2013) Transcriptional super-enhancers connected to cell identity and disease, Cell, 155, https://doi.org/10.1016/ j.cell.2013.09.053.
  30. Mansour, M. R., Abraham, B. J., Anders, L., Berezovskaya, A., Gutierrez, A., Durbin, A. D., Etchin, J., Lawton, L., Sallan, S. E., Silverman, L. B., Loh, M. L., Hunger, S. P., Sanda, T., Young, R. A., and Look, A. T. (2014) Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element, Science, 346, 1373-1377, https://doi.org/10.1126/science.1259037.
  31. Lopes-Ramos, C. M., Barros, B. P., Koyama, F. C., Carpinetti, P. A., Pezuk, J., Doimo, N. T. S., Habr-Gama, A., Perez, R. O., and Parmigiani, R. B. (2017) E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer, PLoS One, 12, e0181153, https://doi.org/10.1371/journal.pone.0181153.
  32. Bhattacharya, A., and Cui, Y. (2016) SomamiR 2.0: a database of cancer somatic mutations altering microRNA-ceRNA interactions, Nucleic Acids Res., 44, D1005-D1010, https://doi.org/10.1093/nar/gkv1220.
  33. López-Bigas, N., Audit, B., Ouzounis, C., Parra, G., and Guigó, R. (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett., 579, 1900-1903, https://doi.org/10.1016/j.febslet.2005.02.047.
  34. Soemedi, R., Cygan, K. J., Rhine, C. L., Wang, J., Bulacan, C., Yang, J., Bayrak-Toydemir, P., McDonald, J., and Fairbrother, W. G. (2017) Pathogenic variants that alter protein code often disrupt splicing, Nat. Genet., 49, 848-855, https://doi.org/10.1038/ng.3837.
  35. De la Hoya, M., Soukarieh, O., López-Perolio, I., Vega, A., Walker, L. C., van Ierland, Y., Baralle, D., Santamariña, M., Lattimore, V., Wijnen, J., Whiley, P., Blanco, A., Raponi, M., Hauke, J., Wappenschmidt, B., Becker, A., Hansen, T. V., Behar, R., Investigators, K., Niederacher, D., Arnold, N., Dworniczak, B., Steinemann, D., Faust, U., Rubinstein, W., et al. (2016) Combined genetic and splicing analysis of BRCA1 c.[594-2A>C, 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms, Hum. Mol. Genet., 25, 2256-2268, https://doi.org/10.1093/hmg/ddw094.
  36. Yeo, G., and Burge, C. B. (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals, J. Comput. Biol., 11, 377-394, https://doi.org/10.1089/1066527041410418.
  37. Angarola, B. L., and Anczuków, O. (2021) Splicing alterations in healthy aging and disease, Wiley Interdiscip. Rev. RNA, 12, e1643, https://doi.org/10.1002/wrna.1643.
  38. Chathoth, K. T., Barrass, J. D., Webb, S., and Beggs, J. D. (2014) A splicing-dependent transcriptional checkpoint associated with prespliceosome formation, Mol. Cell, 53, 779-790, https://doi.org/10.1016/j.molcel.2014.01.017.
  39. Uriostegui-Arcos, M., Mick, S. T., Shi, Z., Rahman, R., and Fiszbein, A. (2023) Splicing activates transcription from weak promoters upstream of alternative exons, Nat. Commun., 14, 3435, https://doi.org/10.1038/s41467-023-39200-2.
  40. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor, J., et al. (2001) Initial sequencing and analysis of the human genome, Nature, 409, 860-921, https://doi.org/10.1038/35057062.
  41. Mills, R. E., Bennett, E. A., Iskow, R. C., and Devine, S. E. (2007) Which transposable elements are active in the human genome? Trends Genet., 23, 183-191, https://doi.org/10.1016/j.tig.2007.02.006.
  42. Mao, J., Zhang, Q., and Cong, Y.-S. (2021) Human endogenous retroviruses in development and disease, Comput. Struct. Biotechnol. J., 19, 5978-5986, https://doi.org/10.1016/j.csbj.2021.10.037.
  43. Lamprecht, B., Walter, K., Kreher, S., Kumar, R., Hummel, M., Lenze, D., Köchert, K., Bouhlel, M. A., Richter, J., Soler, E., Stadhouders, R., Jöhrens, K., Wurster, K. D., Callen, D. F., Harte, M. F., Giefing, M., Barlow, R., Stein, H., Anagnostopoulos, I., Janz, M., Cockerill, P. N., Siebert, R., Dörken, B., Bonifer, C., and Mathas, S. (2010) Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma, Nat. Med., 16, 571-579, https://doi.org/10.1038/nm.2129.
  44. Zhu, X., Fang, H., Gladysz, K., Barbour, J. A., and Wong, J. W. H. (2021) Overexpression of transposable elements is associated with immune evasion and poor outcome in colorectal cancer, Eur. J. Cancer, 157, 94-107, https://doi.org/10.1016/j.ejca.2021.08.003.
  45. McKerrow, W., Wang, X., Mendez-Dorantes, C., Mita, P., Cao, S., Grivainis, M., Ding, L., LaCava, J., Burns, K. H., Boeke, J. D., and Fenyö, D. (2022) LINE-1 expression in cancer correlates with P53 mutation, copy number alteration, and S phase checkpoint, Proc. Natl. Acad. Sci. USA, 119, e2115999119, https://doi.org/10.1073/pnas.2115999119.
  46. Rodić, N., Sharma, R., Zampella, J., Dai, L., Taylor, M. S., Hruban, R. H., Iacobuzio-Donahue, C. A., Maitra, A., Torbenson, M. S., Goggins, M., Shih, Ie. M., Duffield, A. S., Montgomery, E. A., Gabrielson, E., Netto, G. J., Lotan, T. L., De Marzo, A. M., Westra, W., Binder, Z. A., Orr, B. A., Gallia, G. L., Eberhart, C. G., Boeke, J. D., Harris, C. R., and Burns, K. H. (2014) Long interspersed element-1 protein expression is a hallmark of many human cancers, Am. J. Pathol., 184, 1280-1286, https://doi.org/10.1016/j.ajpath.2014.01.007.
  47. Pisanic, T. R., Asaka, S., Lin, S.-F., Yen, T.-T., Sun, H., Bahadirli-Talbott, A., Wang, T. H., Burns, K. H., Wang, T. L., and Shih, I. M. (2019) Long interspersed nuclear element 1 retrotransposons become deregulated during the development of ovarian cancer precursor lesions, Am. J. Pathol., 189, 513-520, https://doi.org/10.1016/ j.ajpath.2018.11.005.
  48. Sato, S., Gillette, M., de Santiago, P. R., Kuhn, E., Burgess, M., Doucette, K., Feng, Y., Mendez-Dorantes, C., Ippoliti, P. J., Hobday, S., Mitchell, M. A., Doberstein, K., Gysler, S. M., Hirsch, M. S., Schwartz, L., Birrer, M. J., Skates, S. J., Burns, K. H., Carr, S. A., and Drapkin, R. (2023) LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma, Sci. Rep., 13, 1537, https://doi.org/10.1038/s41598-023-28840-5.
  49. Göke, J., and Ng, H. H. (2016) CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome, EMBO Rep., 17, 1131-1144, https://doi.org/10.15252/embr.201642743.
  50. Leucci, E., Vendramin, R., Spinazzi, M., Laurette, P., Fiers, M., Wouters, J., Radaelli, E., Eyckerman, S., Leonelli, C., Vanderheyden, K., Rogiers, A., Hermans, E., Baatsen, P., Aerts, S., Amant, F., Van Aelst, S., van den Oord, J., de Strooper, B., Davidson, I., Lafontaine, D. L., Gevaert, K., Vandesompele, J., Mestdagh, P., and Marine, J. C. (2016) Melanoma addiction to the long non-coding RNA SAMMSON, Nature, 531, 518-522, https://doi.org/10.1038/nature17161.
  51. Zhan, H.-X., Wang, Y., Li, C., Xu, J.-W., Zhou, B., Zhu, J. K., Han, H. F., Wang, L., Wang, Y. S., and Hu, S. Y. (2016) LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway, Cancer Lett., 374, 261-271, https://doi.org/10.1016/j.canlet.2016.02.018.
  52. Takahashi, K., Yan, I. K., Kogure, T., Haga, H., and Patel, T. (2014) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer, FEBS Open Bio, 4, 458-467, https://doi.org/10.1016/j.fob.2014.04.007.
  53. Nevalainen, T., Autio, A., Mishra, B. H., Marttila, S., Jylhä, M., and Hurme, M. (2018) Aging-associated patterns in the expression of human endogenous retroviruses, PLoS One, 13, e0207407, https://doi.org/10.1371/journal.pone.0207407.
  54. Balestrieri, E., Pica, F., Matteucci, C., Zenobi, R., Sorrentino, R., Argaw-Denboba, A., Cipriani, C., Bucci, I., and Sinibaldi-Vallebona, P. (2015) Transcriptional activity of human endogenous retroviruses in human peripheral blood mononuclear cells, Biomed Res. Int., 164529, https://doi.org/10.1155/2015/164529.
  55. Dumitrache, L. C., and McKinnon, P. J. (2022) Out of LINE: transposons, genome integrity, and neurodegeneration, Neuron, 110, 3217-3219, https://doi.org/10.1016/j.neuron.2022.09.026.
  56. Li, M., Radvanyi, L., Yin, B., Rycaj, K., Li, J., Chivukula, R., Lin, K., Lu, Y., Shen, J., Chang, D. Z., Li, D., Johanning, G. L., and Wang-Johanning, F. (2017) Downregulation of human endogenous retrovirus type K (HERV-K) viral Env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth, Clin. Cancer Res., 23, 5892-5911, https://doi.org/10.1158/1078-0432.CCR-17-0001.
  57. Balestrieri, E., Arpino, C., Matteucci, C., Sorrentino, R., Pica, F., Alessandrelli, R., Coniglio, A., Curatolo, P., Rezza, G., Macciardi, F., Garaci, E., Gaudi, S., and Sinibaldi-Vallebona, P. (2012) HERVs expression in autism spectrum disorders, PLoS One, 7, e48831, https://doi.org/10.1371/journal.pone.0048831.
  58. Cheetham, S. W., Faulkner, G. J., and Dinger, M. E. (2020) Overcoming challenges and dogmas to understand the functions of pseudogenes, Nat. Rev. Genet., 21, 191-201, https://doi.org/10.1038/s41576-019-0196-1.
  59. Grandér, D., and Johnsson, P. (2016) Pseudogene-expressed RNAs: emerging roles in gene regulation and disease, Curr. Top. Microbiol. Immunol., 394, 111-126, https://doi.org/10.1007/82_2015_442.
  60. Guo, X., Deng, L., Deng, K., Wang, H., Shan, T., Zhou, H., Liang, Z., Xia, J., and Li, C. (2016) Pseudogene PTENP1 suppresses gastric cancer progression by modulating PTEN, Anticancer Agents Med. Chem., 16, 456-464, https://doi.org/10.2174/1871520615666150507121407.
  61. Travis, G., McGowan, E. M., Simpson, A. M., Marsh, D. J., and Nassif, N. T. (2023) PTEN, PTENP1, microRNAs, and ceRNA networks: precision targeting in cancer therapeutics, Cancers, 15, 4954, https://doi.org/10.3390/ cancers15204954.
  62. Poliseno, L., Haimovic, A., Christos, P. J., Vega y Saenz de Miera, E. C., Shapiro, R., Pavlick, A., Berman, R. S., Darvishian, F., and Osman, I. (2011) Deletion of PTENP1 pseudogene in human melanoma, J. Invest. Dermatol., 131, 2497-2500, https://doi.org/10.1038/jid.2011.232.
  63. An, Y., Furber, K. L., and Ji, S. (2017) Pseudogenes regulate parental gene expression via ceRNA network, J. Cell Mol. Med., 21, 185-192, https://doi.org/10.1111/jcmm.12952.
  64. Kalyana-Sundaram, S., Kumar-Sinha, C., Shankar, S., Robinson, D. R., Wu, Y.-M., Cao, X., Asangani, I. A., Kothari, V., Prensner, J. R., Lonigro, R. J., Iyer, M. K., Barrette, T., Shanmugam, A., Dhanasekaran, S. M., Palanisamy, N., and Chinnaiyan, A. M. (2012) Expressed pseudogenes in the transcriptional landscape of human cancers, Cell, 149, 1622-1634, https://doi.org/10.1016/j.cell.2012.04.041.
  65. Mei, D., Song, H., Wang, K., Lou, Y., Sun, W., Liu, Z., Ding, X., and Guo, J. (2013) Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association, Med. Oncol., 30, 709, https://doi.org/10.1007/s12032-013-0709-2.
  66. Lui, K.Y., Peng, H.-R., Lin, J.-R., Qiu, C.-H., Chen, H.-A., Fu, R.-D., Cai, C.-J., and Lu, M.-Q. (2016) Pseudogene integrator complex subunit 6 pseudogene 1 (INTS6P1) as a novel plasma-based biomarker for hepatocellular carcinoma screening, Tumour Biol., 37, 1253-1260, https://doi.org/10.1007/s13277-015-3899-8.
  67. Zheng, X., Tang, H., Zhao, X., Sun, Y., Jiang, Y., and Liu, Y. (2017) Long non-coding RNA FTH1P3 facilitates uveal melanoma cell growth and invasion through miR-224-5p, PLoS One, 12, e0184746, https://doi.org/10.1371/journal.pone.0184746.
  68. Yang, W., Du, W. W., Li, X., Yee, A. J., and Yang, B. B. (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis, Oncogene, 35, 3919-3931, https://doi.org/10.1038/onc.2015.460.
  69. Costa, V., Esposito, R., Aprile, M., and Ciccodicola, A. (2012) Non-coding RNA and pseudogenes in neurodegenerative diseases: “The (Un)Usual Suspects”, Front. Gene, 3, 231, https://doi.org/10.3389/fgene.2012.00231.
  70. Qi, Y., Wang, X., Li, W., Chen, D., Meng, H., and An, S. (2021) Pseudogenes in cardiovascular disease, Front. Mol. Biosci., 7, 622540, https://doi.org/10.3389/fmolb.2020.622540.
  71. Chiefari, E., Iiritano, S., Paonessa, F., Le Pera, I., Arcidiacono, B., Filocamo, M., Foti, D., Liebhaber, S. A., and Brunetti, A. (2010) Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes, Nat. Commun., 1, 40, https://doi.org/10.1038/ncomms1040.
  72. GTEx Consortium (2017) Genetic effects on gene expression across human tissues, Nature, 550, 204-213, https://doi.org/10.1038/nature24277.
  73. Glazier, A. A., Thompson, A., and Day, S. M. (2019) Allelic Imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy, Pflug. Arch., 471, 781-793, https://doi.org/10.1007/s00424-018-2226-9.
  74. Hesson, L. B., Packham, D., Kwok, C.-T., Nunez, A. C., Ng, B., Schmidt, C., Fields, M., Wong, J. W., Sloane, M. A, and Ward, R. L. (2015) Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression, Hum. Mutat., 36, 622-630, https://doi.org/10.1002/humu.22785.
  75. Rouf, M. A., Wen, L., Mahendra, Y., Wang, J., Zhang, K., Liang, S., Wang, Y., Li, Z., Wang, Y., and Wang, G. (2023) The recent advances and future perspectives of genetic compensation studies in the zebrafish model, Genes Dis., 10, 468-479, https://doi.org/10.1016/j.gendis.2021.12.003.
  76. Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Hölper, S., Krüger, M., and Stainier, D. Y. R. (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns, Nature, 524, 230-233, https://doi.org/10.1038/nature14580.
  77. Hagelkruys, A., Lagger, S., Krahmer, J., Leopoldi, A., Artaker, M., Pusch, O., Zezula, J., Weissmann, S., Xie, Y., Schöfer, C., Schlederer, M., Brosch, G., Matthias, P., Selfridge, J., Lassmann, H., Knoblich, J. A., and Seiser, C. (2014) A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog, Development, 141, 604-616, https://doi.org/10.1242/dev.100487.
  78. Jurkin, J., Zupkovitz, G., Lagger, S., Grausenburger, R., Hagelkruys, A., Kenner, L., and Seiser, C. (2011) Distinct and redundant functions of histone deacetylases HDAC1 and HDAC2 in proliferation and tumorigenesis, Cell Cycle, 10, 406-412, https://doi.org/10.4161/cc.10.3.14712.
  79. Gallati, S. (2014) Disease-modifying genes and monogenic disorders: experience in cystic fibrosis, Appl. Clin. Genet., 7, 133-146, https://doi.org/10.2147/TACG.S18675.
  80. Labenski, H., Hedtfeld, S., Becker, T., Tümmler, B., and Stanke, F. (2011) Initial interrogation, confirmation and fine mapping of modifying genes: STAT3, IL1B and IFNGR1 determine cystic fibrosis disease manifestation, Eur. J. Hum. Genet., 19, 1281-1288, https://doi.org/ 10.1038/ejhg.2011.129.
  81. Sobczyńska-Tomaszewska, A., Ołtarzewski, M., Czerska, K., Wertheim-Tysarowska, K., Sands, D., Walkowiak, J., Bal, J., and Mazurczak, T. (2013) NBS CF working group newborn screening for cystic fibrosis: polish 4 years’ experience with CFTR sequencing strategy, Eur. J. Hum. Genet., 21, 391-396, https://doi.org/10.1038/ ejhg.2012.180.
  82. Nissim-Rafinia, M., Aviram, M., Randell, S. H., Shushi, L., Ozeri, E., Chiba-Falek, O., Eidelman, O., Pollard, H. B., Yankaskas, J. R., and Kerem, B. (2004) Restoration of the cystic fibrosis transmembrane conductance regulator function by splicing modulation, EMBO Rep., 5, 1071-1077, https://doi.org/10.1038/sj.embor. 7400273.
  83. Sun, B., and Chen, L. (2023) Mapping genetic variants for nonsense-mediated mRNA decay regulation across human tissues, Genome Biol., 24, 164, https://doi.org/10.1186/s13059-023-03004-w.
  84. Inoue, K., Khajavi, M., Ohyama, T., Hirabayashi, S., Wilson, J., Reggin, J. D., Mancias, P., Butler, I. J., Wilkinson, M. F., Wegner, M., and Lupski, J. R. (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations, Nat. Genet., 36, 361-369, https://doi.org/10.1038/ng1322.
  85. Miller, J. N., and Pearce, D. A. (2014) Nonsense-mediated decay in genetic disease: friend or foe? Mutat. Res. Rev. Mutat. Res., 762, 52-64, https://doi.org/10.1016/j.mrrev.2014.05.001.
  86. Bateman, J. F. (2003) Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage, Hum. Mol. Genet., 12, 217-225, https://doi.org/10.1093/hmg/ddg054.
  87. Cummings, B. B., Karczewski, K. J., Kosmicki, J. A., Seaby, E. G., Watts, N. A., Singer-Berk, M., Mudge, J. M., Karjalainen, J., Satterstrom, F. K., O’Donnell-Luria, A. H., Poterba, T., Seed, C., Solomonson, M., Alföldi, J., Genome Aggregation Database Production Team/Genome Aggregation Database Consortium, Daly, M. J., and MacArthur, D. G. (2020) Transcript expression-aware annotation improves rare variant interpretation, Nature, 581, 452-458, https://doi.org/10.1038/s41586-020-2329-2.
  88. Begay, R. L., Graw, S., Sinagra, G., Merlo, M., Slavov, D., Gowan, K., Jones, K. L., Barbati, G., Spezzacatene, A., Brun, F., Di Lenarda, A., Smith, J. E., Granzier, H. L., Mestroni, L., Taylor, M., and Familial Cardiomyopathy Registry, (2015) Role of titin missense variants in dilated cardiomyopathy, J. Am. Heart Assoc., 4, e002645, https://doi.org/10.1161/JAHA.115.002645.
  89. Ciarloni, L., Ehrensberger, S. H., Imaizumi, N., Monnier-Benoit, S., Nichita, C., Myung, S. J., Kim, J. S., Song, S. Y., Kim, T. I., van der Weg, B., Meier, R., Borovicka, J., Beglinger, C., Vallet, C., Maerten, P., Rüegg, C., and Dorta, G. (2016) Development and clinical validation of a blood test based on 29-gene expression for early detection of colorectal cancer, Clin. Cancer Res., 22, 4604-4611, https://doi.org/10.1158/1078-0432.CCR-15-2057.
  90. Nagumo, Y., Kandori, S., Kojima, T., Hamada, K., Nitta, S., Chihara, I., Shiga, M., Negoro, H., Mathis, B. J., and Nishiyama, H. (2022) Whole-blood gene expression profiles correlate with response to immune checkpoint inhibitors in patients with metastatic renal cell carcinoma, Cancers, 14, 6207, https://doi.org/10.3390/ cancers14246207.
  91. Urbarova, I., Skogholt, A. H., Sun, Y.-Q., Mai, X.-M., Grønberg, B. H., Sandanger, T. M., Sætrom, P., and Nøst, T. H. (2023) Increased expression of individual genes in whole blood is associated with late-stage lung cancer at and close to diagnosis, Sci. Rep., 13, 20760, https://doi.org/10.1038/s41598-023-48216-z.
  92. Augustine, J., and Jereesh, A. S. (2022) Blood-based gene-expression biomarkers identification for the non-invasive diagnosis of Parkinson’s disease using two-layer hybrid feature selection, Gene, 823, 146366, https://doi.org/10.1016/j.gene.2022.146366.
  93. Murdock, D. R., Dai, H., Burrage, L. C., Rosenfeld, J. A., Ketkar, S., Müller, M. F., Yépez, V. A., Gagneur, J., Liu, P., Chen, S., Jain, M., Zapata, G., Bacino, C. A., Chao, H. T., Moretti, P., Craigen, W. J., Hanchard, N. A., Undiagnosed Diseases Network, and Lee, B. (2021) Transcriptome-directed analysis for mendelian disease diagnosis overcomes limitations of conventional genomic testing, J. Clin. Invest., 131, e141500, https://doi.org/10.1172/ JCI141500.
  94. Oliva, M., Muñoz-Aguirre, M., Kim-Hellmuth, S., Wucher, V., Gewirtz, A. D. H., Cotter, D. J., Parsana, P., Kasela, S., Balliu, B., Viñuela, A., Castel, S. E., Mohammadi, P., Aguet, F., Zou, Y., Khramtsova, E. A., Skol, A. D., Garrido-Martín, D., Reverter, F., Brown, A., Evans, P., Gamazon, E. R., Payne, A., Bonazzola, R., Barbeira, A. N., Hamel, A. R., et al. (2020) The impact of sex on gene expression across human tissues, Science, 369, eaba3066, https://doi.org/10.1126/science.aba3066.
  95. Cellerino, A., and Ori, A. (2017) What have we learned on aging from omics studies? Semin. Cell Dev. Biol., 70, 177-189, https://doi.org/10.1016/j.semcdb.2017.06.012.
  96. De Magalhães, J. P., Curado, J., and Church, G. M. (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging, Bioinformatics, 25, 875-881, https://doi.org/10.1093/ bioinformatics/btp073.
  97. Feng, D., and Lazar, M. A. (2012) Clocks, metabolism, and the epigenome, Mol. Cell, 47, 158-167, https://doi.org/10.1016/j.molcel.2012.06.026.
  98. Kornmann, B., Schaad, O., Bujard, H., Takahashi, J. S., and Schibler, U. (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock, PLoS Biol., 5, e34, https://doi.org/10.1371/journal.pbio.0050034.
  99. Mauvoisin, D., Wang, J., Jouffe, C., Martin, E., Atger, F., Waridel, P., Quadroni, M., Gachon, F., and Naef, F. (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver, Proc. Natl. Acad. Sci. USA, 111, 167-172, https://doi.org/10.1073/pnas.1314066111.
  100. Deery, M. J., Maywood, E. S., Chesham, J. E., Sládek, M., Karp, N. A., Green, E. W., Charles, P. D., Reddy, A. B., Kyriacou, C. P., Lilley, K. S., and Hastings, M. H. (2009) Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock, Curr. Biol., 19, 2031-2036, https://doi.org/10.1016/ j.cub.2009.10.024.
  101. Talamanca, L., Gobet, C., and Naef, F. (2023) Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans, Science, 379, 478-483, https://doi.org/10.1126/science.add0846.
  102. Rusmini, M., Griseri, P., Matera, I., Pontarini, E., Ravazzolo, R., Mavilio, D., and Ceccherini, I. (2014) Expression variability and function of the RET gene in adult peripheral blood mononuclear cells, J. Cell. Physiol., 229, 2027-2037, https://doi.org/10.1002/jcp.24660.
  103. Huang, J., Yu, Q., Zhou, Y., Chu, Y., Jiang, F., Zhu, X., Zhang, J., and Wang, Q. (2020) A positive feedback loop formed by NGFR and FOXP3 contributes to the resistance of non-small cell lung cancer to icotinib, Transl. Cancer Res., 9, 1044-1052, https://doi.org/10.21037/tcr.2019.12.60.
  104. Marques-Ramos, A., and Cervantes, R. (2023) Expression of mTOR in normal and pathological conditions, Mol. Cancer, 22, 112, https://doi.org/10.1186/s12943-023-01820-z.
  105. Iannone, F. (2002) Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (P140 TrkA) in human osteoarthritic chondrocytes, Rheumatology, 41, 1413-1418, https://doi.org/10.1093/rheumatology/ 41.12.1413.
  106. Winstanley, C., O’Brien, S., and Brockhurst, M. A. (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections, Trends Microbiol., 24, 327-337, https://doi.org/10.1016/ j.tim.2016.01.008.
  107. Tony-Odigie, A., Wilke, L., Boutin, S., Dalpke, A. H., and Yi, B. (2022) Commensal bacteria in the cystic fibrosis airway microbiome reduce P. aeruginosa induced inflammation, Front. Cell Infect. Microbiol., 12, 824101, https://doi.org/10.3389/fcimb.2022.824101.
  108. Kingdom, R., and Wright, C. F. (2022) Incomplete penetrance and variable expressivity: from clinical studies to population cohorts, Front. Genet., 13, https://doi.org/10.3389/fgene.2022.920390.
  109. Dillies, M.-A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., Keime, C., Marot, G., Castel, D., Estelle, J., Guernec, G., Jagla, B., Jouneau, L., Laloë, D., Le Gall, C., Schaëffer, B., Le Crom, S., Guedj, M., Jaffrézic, F., and French StatOmique Consortium (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, Briefings Bioinform., 14, 671-683, https://doi.org/10.1093/ bib/bbs046.
  110. Kvam, V. M., Liu, P., and Si, Y. A (2012) Comparison of statistical methods for detecting differentially expressed genes from RNA-seq data, Am. J. Bot., 99, 248-256, https://doi.org/10.3732/ajb.1100340.
  111. Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments, BMC Bioinformatics, 11, 94, https://doi.org/10.1186/ 1471-2105-11-94.
  112. Soneson, C., and Delorenzi, M. (2013) A comparison of methods for differential expression analysis of RNA-Seq data, BMC Bioinform., 14, 91, https://doi.org/10.1186/1471-2105-14-91.
  113. Schurch, N. J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N., Gharbi, K., Simpson, G. G., Owen-Hughes, T., Blaxter, M., and Barton, G. J. (2016) How many biological replicates are needed in an RNA-Seq experiment and which differential expression tool should you use? RNA, 22, 839-851, https://doi.org/10.1261/rna.053959.115.
  114. Lamarre, S., Frasse, P., Zouine, M., Labourdette, D., Sainderichin, E., Hu, G., Le Berre-Anton, V., Bouzayen, M., and Maza, E. (2018) Optimization of an RNA-Seq differential gene expression analysis depending on biological replicate number and library size, Front. Plant Sci., 9, 108, https://doi.org/10.3389/fpls.2018.00108.
  115. Yoon, S., and Nam, D. (2017) Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-Seq data, BMC Genomics, 18, 408, https://doi.org/10.1186/s12864-017-3809-0.
  116. GTEx Consortium (2013) The genotype-tissue expression (GTEx) project, Nat. Genet., 45, 580-585, https://doi.org/10.1038/ng.2653.
  117. Schmidt, M., Hopp, L., Arakelyan, A., Kirsten, H., Engel, C., Wirkner, K., Krohn, K., Burkhardt, R., Thiery, J., Loeffler, M., Loeffler-Wirth, H., and Binder, H. (2020) The human blood transcriptome in a large population cohort and its relation to aging and health, Front. Big Data, 3, 548873, https://doi.org/10.3389/fdata.2020.548873.
  118. Green, N., Al-Allak, A., and Fowler, C. (2019) Benefits of introduction of oncotype DX testing, Ann. R. Coll Surg. Engl., 101, 55-59, https://doi.org/10.1308/rcsann.2018.0173.
  119. Knauer, M., Mook, S., Rutgers, E. J., Bender, R. A., Hauptmann, M., van de Vijver, M. J., Koornstra, R. H., Bueno-de-Mesquita, J. M., Linn, S. C., and van’t Veer, L. J. (2010) The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer, Breast Cancer Res. Treat., 120, 655-661, https://doi.org/10.1007/s10549-010-0814-2.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Environmental and molecular genetic mechanisms that can influence gene transcription levels. Legend: LOF – loss of function; GOF – gain of function; NMD – nonsense-mediated mRNA degradation; TF – transcription factor; ME – mobile element

Download (2MB)
3. Fig. 2. Algorithm for developing a targeted panel based on gene transcription for disease diagnosis and prediction of specific structural changes in the genome

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences