Selection of utrs in MRNA-based gene therapy and vaccines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The untranslated regions (UTRs) of messenger RNAs (mRNAs) play a crucial role in regulating translational efficiency, stability, and tissue-specific expression. The review describes various applications and challenges of UTR design in the development of gene therapy and mRNA-based therapeutics. UTRs affect critical biological functions, such as mRNA stability, modulation of protein synthesis, and attenuation of immune response. Incorporating tissue-specific microRNA (miRNA)-binding sites into 3′ UTRs might improve precise targeting of transgene expression and minimize off-target effects. Nucleotide modifications (pseudouridine, N1-methyladenosine, and N4-acetylcytidine) in mRNA and UTRs in particular, improve mRNA stability and translational efficiency. At the same time, several challenges remain, such as lack of consensus on UTRs best suited for certain biomedical applications. Current efforts are focused on integrating high-throughput screening, computational modeling, and experimental validation to refine UTR-based therapeutic strategies. The review presents current information on the design of UTRs and their role in therapeutic applications, with special focus on the possibilities and limitations of existing approaches.

Full Text

Restricted Access

About the authors

I. A. Volkhin

Lomonosov Moscow State University

Email: devyatkin_aa@academpharm.ru

Department of Bioengineering and Bioinformatics

Russian Federation, 119234 Moscow

A. Iu. Paremskaia

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies; Pirogov Medical University

Email: devyatkin_aa@academpharm.ru

Department of Biomedicine

Russian Federation, 125315 Moscow; 117997 Moscow

M. A. Dashian

Pirogov Medical University

Email: devyatkin_aa@academpharm.ru
Russian Federation, 117997 Moscow

D. S. Smeshnova

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical

Email: devyatkin_aa@academpharm.ru
Russian Federation, Technologies, 125315 Moscow

R. E. Pavlov

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical

Email: devyatkin_aa@academpharm.ru
Russian Federation, Technologies, 125315 Moscow

O. N. Mityaeva

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies; Moscow Center for Advanced Studies

Email: devyatkin_aa@academpharm.ru
Russian Federation, 125315 Moscow; 123592 Moscow

P. Yu. Volchkov

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies; The MCSC Named After A.S. Loginov

Email: devyatkin_aa@academpharm.ru

Center for Personalized Medicine

Russian Federation, 125315 Moscow; 111123 Moscow

A. A. Deviatkin

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies; Izmerov Research Institute of Occupational Health; Federal State Budgetary Institution ‘Centre for Strategic Planning and Management of Biomedical Health Risks’ of the Federal Medical Biological Agency

Author for correspondence.
Email: devyatkin_aa@academpharm.ru

Laboratory of Postgenomic Technologies

Russian Federation, 125315 Moscow; 105275 Moscow; 119121 Moscow

References

  1. Qin, S., Tang, X., Chen, Y., Chen, K., Fan, N., Xiao, W., Zheng, Q., Li, G., Teng, Y., Wu, M., and Song, X. (2022) mRNA-based therapeutics: powerful and versatile tools to combat diseases, Signal Transduct. Target. Ther., 7, 166, https://doi.org/10.1038/s41392-022-01007-w.
  2. Chandra, S., Wilson, J. C., Good, D., and Wei, M. Q. (2024) mRNA vaccines: a new era in vaccine development, Oncol. Res., 32, 1-10, https://doi.org/10.32604/or.2024.043987.
  3. Andries, O., Mc Cafferty, S., De Smedt, S. C., Weiss, R., Sanders, N. N., and Kitada, T. (2015) N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice, J. Control. Release, 217, 337-344, https://doi.org/10.1016/j.jconrel.2015.08.051.
  4. Anderson, B. R., Muramatsu, H., Nallagatla, S. R., Bevilacqua, P. C., Sansing, L. H., Weissman, D., and Karikó, K. (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation, Nucleic Acids Res., 38, 5884-5892, https://doi.org/10.1093/nar/gkq347.
  5. Mulroney, T. E., Pöyry, T., Yam-Puc, J. C., Rust, M., Harvey, R. F., Kalmar, L., Horner, E., Booth, L., Ferreira, A. P., Stoneley, M., Sawarkar, R., Mentzer, A. J., Lilley, K. S., Smales, C. M., von der Haar, T., Turtle, L., Dunachie, S., Klenerman, P., Thaventhiran, J. E. D., and Willis, A. E. (2024) N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting, Nature, 625, 189-194, https://doi.org/10.1038/s41586-023-06800-3.
  6. Keeler, A. M., and Flotte, T. R. (2019) Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu. Rev. Virol., 6, 601-621, https://doi.org/10.1146/annurev-virology-092818-015530.
  7. Nieuwenhuis, B., Laperrousaz, E., Tribble, J. R., Verhaagen, J., Fawcett, J. W., Martin, K. R., Williams, P. A., and Osborne, A. (2023) Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters, Gene Ther., 30, 503-519, https://doi.org/10.1038/s41434-022-00380-z.
  8. Tabebordbar, M., Lagerborg, K. A., Stanton, A., King, E. M., Ye, S., Tellez, L., Krunnfusz, A., Tavakoli, S., Widrick, J. J., Messemer, K. A., Troiano, E. C., Moghadaszadeh, B., Peacker, B. L., Leacock, K. A., Horwitz, N., Beggs, A. H., Wagers, A. J., and Sabeti, P. C. (2021) Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species, Cell, 184, 4919-4938.e22, https://doi.org/10.1016/j.cell.2021.08.028.
  9. Goertsen, D., Flytzanis, N. C., Goeden, N., Chuapoco, M. R., Cummins, A., Chen, Y., Fan, Y., Zhang, Q., Sharma, J., Duan, Y., Wang, L., Feng, G., Chen, Y., Ip, N. Y., Pickel, J., and Gradinaru, V. (2022) AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset, Nat. Neurosci., 25, 106-115, https://doi.org/10.1038/s41593-021-00969-4.
  10. Luo, L., Jea, J. D. Y., Wang, Y., Chao, P. W., and Yen, L. (2024) Control of mammalian gene expression by modulation of polyA signal cleavage at 5’ UTR, Nat. Biotechnol., 42, 1454-1466, https://doi.org/10.1038/s41587-023-01989-0.
  11. Zhong, G., Wang, H., He, W., Li, Y., Mou, H., Tickner, Z. J., Tran, M. H., Ou, T., Yin, Y., Diao, H., and Farzan, M. (2020) A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo, Nat. Biotechnol., 38, 169-175, https://doi.org/10.1038/s41587-019-0357-y.
  12. Luoni, M., Giannelli, S., Indrigo, M. T., Niro, A., Massimino, L., Iannielli, A., Passeri, L., Russo, F., Morabito, G., Calamita, P., Gregori, S., Deverman, B., and Broccoli, V. (2020) Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome, Elife, 9, e52629, https://doi.org/10.7554/eLife.52629.
  13. Chu, Y., Yu, D., Li, Y., Huang, K., Shen, Y., Cong, L., Zhang, J., and Wang, M. (2024) A 5’ UTR language model for decoding untranslated regions of mRNA and function predictions, Nat. Mach. Intell., 6, 449-460, https://doi.org/10.1038/S42256-024-00823-9.
  14. Castillo-Hair, S. M., and Seelig, G. (2022) Machine learning for designing next-generation mRNA therapeutics, Acc. Chem. Res., 55, 24-34, https://doi.org/10.1021/acs.accounts.1c00621.
  15. Cao, J., Novoa, E. M., Zhang, Z., Chen, W. C. W., Liu, D., Choi, G. C. G., Wong, A. S. L., Wehrspaun, C., Kellis, M., and Lu, T. K. (2021) High-throughput 5’ UTR engineering for enhanced protein production in non-viral gene therapies, Nat. Commun., 12, 4138, https://doi.org/10.1038/s41467-021-24436-7.
  16. Castillo-Hair, S., Fedak, S., Wang, B., Linder, J., Havens, K., Certo, M., and Seelig, G. (2024) Optimizing 5’UTRs for mRNA-delivered gene editing using deep learning, Nat. Commun., 15, 5284, https://doi.org/10.1038/ S41467-024-49508-2.
  17. Hajj, K. A., and Whitehead, K. A. (2017) Tools for translation: non-viral materials for therapeutic mRNA delivery, Nat. Rev. Mater., 2, 17056, https://doi.org/10.1038/natrevmats.2017.56.
  18. Kon, E., Elia, U., and Peer, D. (2022) Principles for designing an optimal mRNA lipid nanoparticle vaccine, Curr. Opin. Biotechnol., 73, 329-336, https://doi.org/10.1016/j.copbio.2021.09.016.
  19. Park, K. S., Sun, X., Aikins, M. E., and Moon, J. J. (2021) Non-viral COVID-19 vaccine delivery systems, Adv. Drug Deliv. Rev., 169, 137-151, https://doi.org/10.1016/j.addr.2020.12.008.
  20. Lu, R. M., Hsu, H. E., Perez, S. J. L. P., Kumari, M., Chen, G. H., Hong, M. H., Lin, Y. S., Liu, C. H., Ko, S. H., Concio, C. A. P., Su, Y. J., Chang, Y. H., Li, W. S., and Wu, H. C. (2024) Current landscape of mRNA technologies and delivery systems for new modality therapeutics, J. Biomed. Sci., 31, 89, https://doi.org/10.1186/s12929-024-01080-z.
  21. Wadhwa, A., Aljabbari, A., Lokras, A., Foged, C., and Thakur, A. (2020) Opportunities and challenges in the delivery of mRNA-based vaccines, Pharmaceutics, 12, 102, https://doi.org/10.3390/pharmaceutics12020102.
  22. Jones, C. H., Androsavich, J. R., So, N., Jenkins, M. P., MacCormack, D., Prigodich, A., Welch, V., True, J. M., and Dolsten, M. (2024) Breaking the mold with RNA – a “RNAissance” of life science, NPJ Genomic Med., 9, 2, https://doi.org/10.1038/s41525-023-00387-4.
  23. Baek, R., Coughlan, K., Jiang, L., Liang, M., Ci, L., Singh, H., Zhang, H., Kaushal, N., Rajlic, I. L., Van, L., Dimen, R., Cavedon, A., Yin, L., Rice, L., Frassetto, A., Guey, L., Finn, P., and Martini, P. G. V. (2024) Characterizing the mechanism of action for mRNA therapeutics for the treatment of propionic acidemia, methylmalonic acidemia, and phenylketonuria, Nat. Commun., 15, 3804, https://doi.org/10.1038/s41467-024-47460-9.
  24. Lundstrom, K. (2023) Viral vectors in gene therapy: where do we stand in 2023? Viruses, 15, 698, https://doi.org/10.3390/v15030698.
  25. Kishimoto, T. K., and Samulski, R. J. (2022) Addressing high dose AAV toxicity – “one and done” or “slower and lower”? Expert Opin. Biol. Ther., 22, 1067-1071, https://doi.org/10.1080/14712598.2022.2060737.
  26. Zwi-Dantsis, L., Mohamed, S., Massaro, G., and Moeendarbary, E. (2025) Adeno-associated virus vectors: principles, practices, and prospects in gene therapy, Viruses, 17, 239, https://doi.org/10.3390/V17020239.
  27. Wang, J. H., Gessler, D. J., Zhan, W., Gallagher, T. L., and Gao, G. (2024) Adeno-associated virus as a delivery vector for gene therapy of human diseases, Signal Transduct. Target. Ther., 9, 78, https://doi.org/10.1038/ s41392-024-01780-w.
  28. Li, C., and Samulski, R. J. (2020) Engineering adeno-associated virus vectors for gene therapy, Nat. Rev. Genet., 21, 255-272, https://doi.org/10.1038/s41576-019-0205-4.
  29. Von der Haar, T., Mulroney, T. E., Hedayioglu, F., Kurusamy, S., Rust, M., Lilley, K. S., Thaventhiran, J. E., Willis, A. E., and Smales, C. M. (2023) Translation of in vitro-transcribed RNA therapeutics, Front. Mol. Biosci., 10, 1128067, https://doi.org/10.3389/fmolb.2023.1128067.
  30. Buchlis, G., Podsakoff, G. M., Radu, A., Hawk, S. M., Flake, A. W., Mingozzi, F., and High, K. A. (2012) Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer, Blood, 119, 3038-3041, https://doi.org/10.1182/blood-2011-09-382317.
  31. Fischer, M. D., Simonelli, F., Sahni, J., Holz, F. G., Maier, R., Fasser, C., Suhner, A., Stiehl, D. P., Chen, B., Audo, I., and Leroy, B. P. (2024) Real-world safety and effectiveness of Voretigene Neparvovec: results up to 2 years from the prospective, registry-based PERCEIVE study, Biomolecules, 14, 122, https://doi.org/10.3390/ biom14010122.
  32. Strauss, K. A., Farrar, M. A., Muntoni, F., Saito, K., Mendell, J. R., Servais, L., McMillan, H. J., Finkel, R. S., Swoboda, K. J., Kwon, J. M., Zaidman, C. M., Chiriboga, C.A., Iannaccone, S. T., Krueger, J. M., Parsons, J. A., Shieh, P. B., Kavanagh, S., Tauscher-Wisniewski, S., McGill, B. E., and Macek, T. A. (2022) Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial, Nat. Med., 28, 1381-1389, https://doi.org/10.1038/s41591-022-01866-4.
  33. Ferreira, V., Twisk, J., Kwikkers, K., Aronica, E., Brisson, D., Methot, J., Petry, H., and Gaudet, D. (2014) Immune responses to intramuscular administration of alipogene tiparvovec (AAV1-LPLS447X) in a phase II clinical trial of lipoprotein lipase deficiency gene therapy, Hum. Gene Ther., 25, 180-188, https://doi.org/ 10.1089/hum.2013.169.
  34. Ozelo, M. C., Mahlangu, J., Pasi, K. J., Giermasz, A., Leavitt, A. D., Laffan, M., Symington, E., Quon, D. V., Wang, J.-D., Peerlinck, K., Pipe, S. W., Madan, B., Key, N. S., Pierce, G. F., O’Mahony, B., Kaczmarek, R., Henshaw, J., Lawal, A., Jayaram, K., Huang, M., Yang, X., Wong, W. Y., and Kim, B. (2022) Valoctocogene roxaparvovec gene therapy for hemophilia A, N. Engl. J. Med., 386, 1013-1025, https://doi.org/10.1056/nejmoa2113708.
  35. Sekayan, T., Simmons, D. H., and von Drygalski, A. (2023) Etranacogene dezaparvovec-drlb gene therapy for patients with hemophilia B (congenital factor IX deficiency), Expert Opin. Biol. Ther., 23, 1173-1184, https:// doi.org/10.1080/14712598.2023.2282138.
  36. Xu, S., Yang, K., Li, R., and Zhang, L. (2020) mRNA vaccine era – mechanisms, drug platform and clinical prospection, Int. J. Mol. Sci., 21, 6582, https://doi.org/10.3390/ijms21186582.
  37. Mu, X., and Hur, S. (2021) Immunogenicity of in vitro-transcribed RNA, Acc. Chem. Res., 54, 4012-4023, https://doi.org/10.1021/acs.accounts.1c00521.
  38. Gholamalipour, Y., Karunanayake Mudiyanselage, A., and Martin, C. T. (2018) 3′ end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character – RNA-Seq analyses, Nucleic Acids Res., 46, 9253-9263, https://doi.org/10.1093/nar/gky796.
  39. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates, Nucleic Acids Res., 15, 8783-8798, https://doi.org/10.1093/nar/15.21.8783.
  40. Pelletier, J., and Sonenberg, N. (2019) The organizing principles of eukaryotic ribosome recruitment, Annu. Rev. Biochem., 88, 307-335, https://doi.org/10.1146/annurev-biochem-013118-111042.
  41. To, K. K. W., Cho, W. C. S. (2021) An overview of rational design of mRNA-based therapeutics and vaccines, Expert Opin. Drug Discov., 16, 1307-1317, https://doi.org/10.1080/17460441.2021.1935859.
  42. Shanmugasundaram, M., Charles, I., and Kore, A. R. (2016) Design, synthesis and biological evaluation of dinucleotide mRNA cap analog containing propargyl moiety, Bioorganic Med. Chem., 24, 1204-1208, https://doi.org/10.1016/j.bmc.2016.01.048.
  43. Kore, A. R., Shanmugasundaram, M., Charles, I., Vlassov, A. V., and Barta, T. J. (2009) Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization, J. Am. Chem. Soc., 131, 6364-6365, https://doi.org/10.1021/ja901655p.
  44. Zeng, C., Hou, X., Yan, J., Zhang, C., Li, W., Zhao, W., Du, S., and Dong, Y. (2020) Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivo, Adv. Mater., 32, e2004452, https://doi.org/10.1002/adma.202004452.
  45. Mockey, M., Gonçalves, C., Dupuy, F. P., Lemoine, F. M., Pichon, C., and Midoux, P. (2006) mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level, Biochem. Biophys. Res. Commun., 340, 1062-1068, https://doi.org/10.1016/j.bbrc.2005.12.105.
  46. Strenkowska, M., Kowalska, J., Lukaszewicz, M., Zuberek, J., Su, W., Rhoads, R. E., Darzynkiewicz, E., and Jemielity, J. (2010) Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications, New J. Chem., 34, 993-1007, https://doi.org/10.1039/ b9nj00644c.
  47. Grudzien, E., Stepinski, J., Jankowska-Anyszka, M., Stolarski, R., Darzynkiewicz, E., and Rhoads, R. E. (2004) Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency, RNA, 10, 1479-1487, https://doi.org/10.1261/rna.7380904.
  48. Grudzien-Nogalska, E., Jemielity, J., Kowalska, J., Darzynkiewicz, E., and Rhoads, R. E. (2007) Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells, RNA, 13, 1745-1755, https://doi.org/10.1261/rna.701307.
  49. Kuhn, A. N., Diken, M., Kreiter, S., Selmi, A., Kowalska, J., Jemielity, J., Darzynkiewicz, E., Huber, C., Türeci, Ö., and Sahin, U. (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo, Gene Ther., 17, 961-971, https://doi.org/10.1038/gt.2010.52.
  50. Peng, J., Murray, E. L., and Schoenberg, D. R. (2008) In vivo and in vitro analysis of poly(a) length effects on mRNA translation, Methods Mol. Biol., 419, 215-230, https://doi.org/10.1007/978-1-59745-033-1_15.
  51. Chang, H., Lim, J., Ha, M., and Kim, V. N. (2014) TAIL-seq: Genome-wide determination of poly(A) tail length and 3’ end modifications, Mol. Cell, 53, 1044-1052, https://doi.org/10.1016/j.molcel.2014.02.007.
  52. Holtkamp, S., Kreiter, S., Selmi, A., Simon, P., Koslowski, M., Huber, C., Türeci, Ö., and Sahin, U. (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells, Blood, 108, 4009-4017, https://doi.org/10.1182/blood-2006-04-015024.
  53. Karikó, K., Buckstein, M., Ni, H., and Weissman, D. (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA, Immunity, 23, 165-175, https://doi.org/10.1016/j.immuni.2005.06.008.
  54. Karikó, K., Muramatsu, H., Welsh, F. A., Ludwig, J., Kato, H., Akira, S., and Weissman, D. (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability, Mol. Ther., 16, 1833-1840, https://doi.org/10.1038/mt.2008.200.
  55. Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell, 44, 283-292, https://doi.org/10.1016/0092-8674(86)90762-2.
  56. Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6, EMBO J., 16, 2482-2492, https://doi.org/10.1093/emboj/16.9.2482.
  57. Hernández, G., Osnaya, V. G., and Pérez-Martínez, X. (2019) Conservation and variability of the AUG initiation codon context in eukaryotes, Trends Biochem. Sci., 44, 1009-1021, https://doi.org/10.1016/j.tibs.2019.07.001.
  58. Hernández, G., García, A., Weingarten-Gabbay, S., Mishra, R. K., Hussain, T., Amiri, M., Moreno-Hagelsieb, G., Montiel-Dávalos, A., Lasko, P., and Sonenberg, N. (2024) Functional analysis of the AUG initiator codon context reveals novel conserved sequences that disfavor mRNA translation in eukaryotes, Nucleic Acids Res., 52, 1064-1079, https://doi.org/10.1093/nar/gkad1152.
  59. Gallie, D. R. (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency, Genes Dev., 5, 2108-2116, https://doi.org/10.1101/gad.5.11.2108.
  60. Tanguay, R. L., Gallie, D. R. (1996) Translational efficiency is regulated by the length of the 3’ untranslated region, Mol. Cell. Biol., 16, https://doi.org/10.1128/mcb.16.1.146.
  61. Aditham, A., Shi, H., Guo, J., Zeng, H., Zhou, Y., Wade, S. D., Huang, J., Liu, J., and Wang, X. (2022) Chemically modified mocRNAs for highly efficient protein expression in mammalian cells, ACS Chem. Biol., 17, 3352-3366, https://doi.org/10.1021/acschembio.1c00569.
  62. Chen, H., Liu, D., Guo, J., Aditham, A., Zhou, Y., Tian, J., Luo, S., Ren, J., Hsu, A., Huang, J., Kostas, F., Wu, M., Liu, D. R., and Wang, X. (2024) Branched chemically modified poly(A) tails enhance the translation capacity of mRNA, Nat. Biotechnol., 43, 194-203, https://doi.org/10.1038/s41587-024-02174-7.
  63. Asrani, K. H., Farelli, J. D., Stahley, M. R., Miller, R. L., Cheng, C. J., Subramanian, R. R., and Brown, J. M. (2018) Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA, RNA Biol., 15, 756-762, https://doi.org/10.1080/15476286.2018.1450054.
  64. Pardi, N., Hogan, M. J., and Weissman, D. (2020) Recent advances in mRNA vaccine technology, Curr. Opin. Immunol., 65, 14-20, https://doi.org/10.1016/j.coi.2020.01.008.
  65. Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. (2011) Global quantification of mammalian gene expression control, Nature, 473, 337-342, https://doi.org/10.1038/ nature10098.
  66. Mayr, C. (2017) Regulation by 3’-untranslated regions, Annu. Rev. Genet., 51, 171-194, https://doi.org/10.1146/annurev-genet-120116-024704.
  67. Leppek, K., Byeon, G. W., Kladwang, W., Wayment-Steele, H. K., Kerr, C. H., Xu, A. F., Kim, D. S., Topkar, V. V., Choe, C., Rothschild, D., Tiu, G. C., Wellington-Oguri, R., Fujii, K., Sharma, E., Watkins, A. M., Nicol, J. J., Romano, J., Tunguz, B., Diaz, F., Cai, H., Guo, P., Wu, J., Meng, F., Shi, S., Participants, E., Dormitzer, P. R., Solórzano, A., Barna, M., and Das, R. (2022) Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics, Nat. Commun., 13, 1536, https://doi.org/10.1038/s41467-022-28776-w.
  68. Babendure, J. R., Babendure, J. L., Ding, J. H., and Tsien, R. Y. (2006) Control of mammalian translation by mRNA structure near caps, RNA, 12, 851-861, https://doi.org/10.1261/rna.2309906.
  69. Kozak, M. (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs, Mol. Cell. Biol., 9, 5134-5142, https://doi.org/10.1128/mcb.9.11.5134-5142.1989.
  70. Edgil, D., Polacek, C., and Harris, E. (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited, J. Virol., 80, 2976-2986, https://doi.org/10.1128/jvi.80.6.2976-2986.2006.
  71. García-Montalvo, B. M., Medina, F., and Del Angel, R. M. (2004) La protein binds to NS5 and NS3 and to the 5’ and 3’ ends of Dengue 4 virus RNA, Virus Res., 102, 141-150, https://doi.org/10.1016/j.virusres.2004.01.024.
  72. Wayment-Steele, H. K., Kim, D. S., Choe, C. A., Nicol, J. J., Wellington-Oguri, R., Watkins, A. M., Sperberg, R. A. P., Huang, P.-S., Participants, E., and Das, R. (2020) Theoretical basis for stabilizing messenger RNA through secondary structure design, bioRxiv, https://doi.org/10.1101/2020.08.22.262931.
  73. Leppek, K., Das, R., and Barna, M. (2018) Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them, Nat. Rev. Mol. Cell Biol., 19, 158-174, https://doi.org/10.1038/nrm.2017.103.
  74. Huang, X., and Du, Z. (2024) Possible involvement of three-stemmed pseudoknots in regulating translational initiation in human mRNAs, PLoS One, 19, e0307541, https://doi.org/10.1371/journal.pone.0307541.
  75. Singha Roy, A., Majumder, S., and Saha, P. (2023) Stable RNA G-quadruplex in the 5’-UTR of human cIAP1 mRNA promotes translation in an IRES-independent manner, Biochemistry, 63, 475-486, https://doi.org/10.1021/ acs.biochem.3c00521.
  76. Iacono, M., Mignone, F., and Pesole, G. (2005) uAUG and uORFs in human and rodent 5’-untranslated mRNAs, Gene, 349, 97-105, https://doi.org/10.1016/j.gene.2004.11.041.
  77. Wethmar, K. (2014) The regulatory potential of upstream open reading frames in eukaryotic gene expression, Wiley Interdiscip. Rev. RNA, 5, 765-778, https://doi.org/10.1002/wrna.1245.
  78. Dever, T. E., Ivanov, I. P., and Hinnebusch, A. G. (2023) Translational regulation by uORFs and start codon selection stringency, Genes Dev., 37, 474-489, https://doi.org/10.1101/gad.350752.123.
  79. Manske, F., Ogoniak, L., Jürgens, L., Grundmann, N., Makałowski, W., and Wethmar, K. (2023) The new uORFdb: integrating literature, sequence, and variation data in a central hub for uORF research, Nucleic Acids Res., 51, 1029-1042, https://doi.org/10.1093/nar/gkac899.
  80. Orr, M. W., Mao, Y., Storz, G., and Qian, S. B. (2021) Alternative ORFs and small ORFs: shedding light on the dark proteome, Nucleic Acids Res., 48, 1029-1042, https://doi.org/10.1093/NAR/GKZ734.
  81. Hinnebusch, A. G., Ivanov, I. P., Sonenberg, N. (2016) Translational control by 5’-untranslated regions of eukaryotic mRNAs, Science, 352, 1413-1416, https://doi.org/10.1126/science.aad9868.
  82. Araujo, P. R., Yoon, K., Ko, D., Smith, A. D., Qiao, M., Suresh, U., Burns, S. C., and Penalva, L. O. F. (2012) Before it gets started: regulating translation at the 5’UTR, Comp. Funct. Genomics, 2012, 475731, https://doi.org/10.1155/2012/475731.
  83. Bottorff, T. A., Park, H., Geballe, A. P., and Subramaniam, A. R. (2022) Translational buffering by ribosome stalling in upstream open reading frames, PLoS Genet., 18, e1010460, https://doi.org/10.1371/journal.pgen.1010460.
  84. Matsui, M., Yachie, N., Okada, Y., Saito, R., and Tomita, M. (2007) Bioinformatic analysis of post-transcriptional regulation by uORF in human and mouse, FEBS Lett., 581, 4184-4188, https://doi.org/10.1016/j.febslet. 2007.07.057.
  85. Russell, P. J., Slivka, J. A., Boyle, E. P., Burghes, A. H. M., and Kearse, M. G. (2023) Translation reinitiation after uORFs does not fully protect mRNAs from nonsense-mediated decay, RNA, 29, 735-744, https://doi.org/10.1261/rna.079525.122.
  86. Brogna, S., and Wen, J. (2009) Nonsense-mediated mRNA decay (NMD) mechanisms, Nat. Struct. Mol. Biol., 16, 107-113, https://doi.org/10.1038/nsmb.1550.
  87. Oliveira, C. C., and McCarthy, J. E. G. (1995) The relationship between eukaryotic translation and mRNA stability. A short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast Saccharomyces cerevisiae, J. Biol. Chem., 270, 8936-8943, https://doi.org/10.1074/jbc.270.15.8936.
  88. Ruiz-Echevarría, M. J., and Peltz, S. W. (2000) The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames, Cell, 101, 741-751, https://doi.org/10.1016/S0092-8674 (00)80886-7.
  89. Kim, S. C., Sekhon, S. S., Shin, W. R., Ahn, G., Cho, B. K., Ahn, J. Y., and Kim, Y. H. (2022) Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency, Mol. Cell. Toxicol., 18, 1-8, https://doi.org/10.1007/s13273-021-00171-4.
  90. Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., Forrest, A. R. R., Carninci, P., Biffo, S., Stupka, E., and Gustincich, S. (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat, Nature, 491, 454-457, https://doi.org/10.1038/nature11508.
  91. Muckenthaler, M. U., Galy, B., and Hentze, M. W. (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network, Annu. Rev. Nutr., 28, 197-213, https://doi.org/10.1146/annurev.nutr.28.061807.155521.
  92. Medenbach, J., Seiler, M., and Hentze, M. W. (2011) Translational control via protein-regulated upstream open reading frames, Cell, 145, 902-913, https://doi.org/10.1016/j.cell.2011.05.005.
  93. Evdokimova, V., Tognon, C., Ng, T., Ruzanov, P., Melnyk, N., Fink, D., Sorokin, A., Ovchinnikov, L. P., Davicioni, E., Triche, T. J., and Sorensen, P. H. B. (2009) Translational activation of Snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition, Cancer Cell, 15, 402-415, https://doi.org/10.1016/j.ccr.2009.03.017.
  94. Mayya, V. K., and Duchaine, T. F. (2019) Ciphers and executioners: how 3′-untranslated regions determine the fate of messenger RNAs, Front. Genet., 10, 6, https://doi.org/10.3389/fgene.2019.00006.
  95. Zekri, L., Kuzuoǧlu-Öztürk, D., and Izaurralde, E. (2013) GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation, EMBO J., 32, 1052-1065, https://doi.org/10.1038/ emboj.2013.44.
  96. Kamenska, A., Simpson, C., Vindry, C., Broomhead, H., Bénard, M., Ernoult-Lange, M., Lee, B. P., Harries, L. W., Weil, D., and Standart, N. (2016) The DDX6-4E-T interaction mediates translational repression and P-body assembly, Nucleic Acids Res., 44, 6318-6334, https://doi.org/10.1093/nar/gkw565.
  97. Lai, W. S., Carballo, E., Thorn, J. M., Kennington, E. A., and Blackshear, P. J. (2000) Interactions of CCCH Zinc finger proteins with mRNA, J. Biol. Chem., 275, 17827-17837, https://doi.org/10.1074/jbc.m001696200.
  98. Brennan, C. M., and Steitz, J. A. (2001) HuR and mRNA stability, Cell. Mol. Life Sci., 58, 266-277, https://doi.org/10.1007/PL00000854.
  99. Gong, C., and Maquat, L. E. (2011) LncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 39 UTRs via Alu eleme, Nature, 470, 329-333, https://doi.org/10.1038/nature09701.
  100. O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation, Front. Endocrinol., 9, 402, https://doi.org/10.3389/fendo.2018.00402.
  101. Liegro, C. M. Di, Bellafiore, M., Izquierdo, J. M., Rantanen, A., and Cuezva, J. M. (2000) 3’-Untranslated regions of oxidative phosphorylation mRNAs function in vivo as enhancers of translation, Biochem. J., 352, 109-115.
  102. Popa, I., Harris, M. E., Donello, J. E., and Hope, T. J. (2002) CRM1-dependent function of a cis-acting RNA export element, Mol. Cell. Biol., 22, 2057-2067, https://doi.org/10.1128/mcb.22.7.2057-2067.2002.
  103. Loeb, J. E., Cordier, W. S., Harris, M. E., Weitzman, M. D., and Hope, T. J. (1999) Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy, Hum. Gene Ther., 10, 2295-2305, https://doi.org/10.1089/ 10430349950016942.
  104. Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S., and Mayr, C. (2013) Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression, Genes Dev., 27, 2380-2396, https://doi.org/10.1101/gad.229328.113.
  105. Xie, J., Xie, Q., Zhang, H., Ameres, S. L., Hung, J. H., Su, Q., He, R., Mu, X., Seher Ahmed, S., Park, S., Kato, H., Li, C., Mueller, C., Mello, C. C., Weng, Z., Flotte, T. R., Zamore, P. D., and Gao, G. (2011) MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression, Mol. Ther., 19, 526-535, https://doi.org/10.1038/mt.2010.279.
  106. Qiao, C., Yuan, Z., Li, J., He, B., Zheng, H., Mayer, C., Li, J., and Xiao, X. (2011) Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver, Gene Ther., 18, 403-410, https://doi.org/10.1038/gt.2010.157.
  107. Karali, M., Manfredi, A., Puppo, A., Marrocco, E., Gargiulo, A., Allocca, M., de Corte, M., Rossi, S., Giunti, M., Bacci, M. L., Simonelli, F., Surace, E. M., Banfi, S., and Auricchio, A. (2011) MicroRNA-restricted transgene expression in the retina, PLoS One, 6, e22166, https://doi.org/10.1371/journal.pone.0022166.
  108. Geisler, A., Fechner, H. (2016) MicroRNA-regulated viral vectors for gene therapy, World J. Exp. Med., 6, 37-54, https://doi.org/10.5493/wjem.v6.i2.37.
  109. Ludwig, N., Leidinger, P., Becker, K., Backes, C., Fehlmann, T., Pallasch, C., Rheinheimer, S., Meder, B., Stähler, C., Meese, E., and Keller, A. (2016) Distribution of miRNA expression across human tissues, Nucleic Acids Res., 44, 3865-3877, https://doi.org/10.1093/nar/gkw116.
  110. Kelly, E. J., Nace, R., Barber, G. N., and Russell, S. J. (2010) Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting, J. Virol., 84, 1550-1562, https://doi.org/10.1128/jvi.01788-09.
  111. Barnes, D., Kunitomi, M., Vignuzzi, M., Saksela, K., and Andino, R. (2008) Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines, Cell Host Microbe, 4, 239-248, https://doi.org/10.1016/j.chom.2008.08.003.
  112. Yen, L. C., Lin, Y. L., Sung, H. H., Liao, J. T., Tsao, C. H., Su, C. M., Lin, C. K., and Liao, C. L. (2013) Neurovirulent flavivirus can be attenuated in mice by incorporation of neuron-specific microRNA recognition elements into viral genome, Vaccine, 31, 5915-5922, https://doi.org/10.1016/j.vaccine.2011.09.102.
  113. Turner, J. D., and Muller, C. P. (2005) Structure of the glucocorticoid receptor (NR3C1) gene 5’ untranslated region: identification, and tissue distribution of multiple new human exon 1, J. Mol. Endocrinol., 35, 283-292, https://doi.org/10.1677/jme.1.01822.
  114. Hirahara, Y., Tsuda, M., Wada, Y., and Honke, K. (2000) cDNA cloning, genomic cloning, and tissue-specific regulation of mouse cerebroside sulfotransferase, Eur. J. Biochem., 267, 1909-1917, https://doi.org/10.1046/ j.1432-1327.2000.01139.x.
  115. Wortman, M. J., Hanson, L. K., Martínez-Sobrido, L., Campbell, A. E., Nance, J. A., García-Sastre, A., and Johnson, E. M. (2010) Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals, BMC Mol. Biol., 11, 81, https://doi.org/10.1186/1471-2199-11-81.
  116. Roberts, S. J., Chung, K.-N., Nachmanoff, K., and Elwood, P. C. (1997) Tissue-specific promoters of the α human folate receptor gene yield transcripts with divergent 5’ leader sequences and different translational efficiencies, Biochem. J., 326, 439-447, https://doi.org/10.1042/bj3260439.
  117. Xiao, Y., Muhuri, M., Li, S., Qin, W., Xu, G., Luo, L., Li, J., Letizia, A. J., Wang, S. K., Chan, Y. K., Wang, C., Fuchs, S. P., Wang, D., Su, Q., Abu Nahid, M., Church, G. M., Farzan, M., Yang, L., Wei, Y., Desrosiers, R. C., Mueller, C., Tai, P. W. L., and Gao, G. (2019) Circumventing cellular immunity by miR142-mediated regulation sufficiently supports rAAV-delivered OVA expression without activating humoral immunity, JCI Insight, 4, e99052, https://doi.org/10.1172/jci.insight.99052.
  118. Majowicz, A., Maczuga, P., Kwikkers, K. L., van der Marel, S., van Logtenstein, R., Petry, H., van Deventer, S. J., Konstantinova, P., and Ferreira, V. (2013) Mir-142-3p target sequences reduce transgene-directed immunogenicity following intramuscular adeno-associated virus 1 vector-mediated gene delivery, J. Gene Med., 15, 219-232, https://doi.org/10.1002/jgm.2712.
  119. Muhuri, M., Zhan, W., Maeda, Y., Li, J., Lotun, A., Chen, J., Sylvia, K., Dasgupta, I., Arjomandnejad, M., Nixon, T., Keeler, A. M., Manokaran, S., He, R., Su, Q., Tai, P. W. L., and Gao, G. (2021) Novel combinatorial microRNA-binding sites in AAV vectors synergistically diminish antigen presentation and transgene immunity for efficient and stable transduction, Front. Immunol., 12, 674242, https://doi.org/10.3389/fimmu.2021.674242.
  120. Khoroshkin, M., Zinkevich, A., Aristova, E., Yousefi, H., and Sean, B. (2024) A generative framework for enhanced cell-type specificity in rationally designed mRNAs, bioRxiv, https://doi.org/10.1101/2024.12.31.630783.
  121. Flamand, M. N., Tegowski, M., Meyer, K. D. (2023) The proteins of mRNA modification: writers, readers, and erasers, Annu. Rev. Biochem., 92, 145-173, https://doi.org/10.1146/annurev-biochem-052521-035330.
  122. Khan, F. A., Nsengimana, B., Awan, U. A., Ji, X. Y., Ji, S., and Dong, J. (2024) Regulatory roles of N6-methyladenosine (m⁶A) methylation in RNA processing and non-communicable diseases, Cancer Gene Ther., 31, 1439-1453, https://doi.org/10.1038/S41417-024-00789-1.
  123. Yu, X., Zhao, H., Wang, R., Chen, Y., Ouyang, X., Li, W., Sun, Y., and Peng, A. (2024) Cancer epigenetics: from laboratory studies and clinical trials to precision medicine, Cell Death Discov., 10, 28, https://doi.org/10.1038/s41420-024-01803-z.
  124. Wilinski, D., and Dus, M. (2023) N6-adenosine methylation controls the translation of insulin mRNA, Nat. Struct. Mol. Biol., 30, 1260-1264, https://doi.org/10.1038/s41594-023-01048-x.
  125. Morais, P., Adachi, H., and Yu, Y.-T. (2021) The critical contribution of pseudouridine to mRNA COVID-19 vaccines, Front. Cell Dev. Biol., 9, 789427, https://doi.org/10.3389/fcell.2021.789427.
  126. Song, B., Tang, Y., Wei, Z., Liu, G., Su, J., Meng, J., and Chen, K. (2020) PIANO: a web server for pseudouridine-site (Ψ) identification and functional annotation, Front. Genet., 11, 88, https://doi.org/10.3389/fgene.2020.00088.
  127. Kierzek, E., Malgowska, M., Lisowiec, J., Turner, D. H., Gdaniec, Z., Kierzek, R. (2014) The contribution of pseudouridine to stabilities and structure of RNAs, Nucleic Acids Res., 42, 3492-3501, https://doi.org/10.1093/nar/gkt1330.
  128. Karikó, K., Muramatsu, H., Keller, J. M., and Weissman, D. (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin, Mol. Ther., 20, 948-953, https://doi.org/10.1038/mt.2012.7.
  129. Chen, S., Liu, Z., Cai, J., Li, H., and Qiu, M. (2024) N1-methylpseudouridine modification level correlates with protein expression, immunogenicity, and stability of mRNA, MedComm, 5, e691, https://doi.org/10.1002/MCO2.691.
  130. Sample, P. J., Wang, B., Reid, D. W., Presnyak, V., McFadyen, I. J., Morris, D. R., and Seelig, G. (2019) Human 5’ UTR design and variant effect prediction from a massively parallel translation assay, Nat. Biotechnol., 37, 803-809, https://doi.org/10.1038/s41587-019-0164-5.
  131. Chang, Y., Jin, H., Cui, Y., Yang, F., Chen, K., Kuang, W., Huo, C., Xu, Z., Li, Y., Lin, A., Yang, B., Liu, W., Xie, S., and Zhou, T. (2024) PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression, Clin. Transl. Med., 14, e1811, https://doi.org/10.1002/CTM2.1811.
  132. Monroe, J., Eyler, D. E., Mitchell, L., Deb, I., Bojanowski, A., Srinivas, P., Dunham, C. M., Roy, B., Frank, A. T., and Koutmou, K. S. (2024) N1-Methylpseudouridine and pseudouridine modifications modulate mRNA decoding during translation, Nat. Commun., 15, 1-11, https://doi.org/10.1038/s41467-024-51301-0.
  133. Moradian, H., Roch, T., Anthofer, L., Lendlein, A., and Gossen, M. (2022) Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages, Mol. Ther. Nucleic Acids, 27, 854-869, https://doi.org/10.1016/j.omtn.2022.01.004.
  134. Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., Mao, Y., Lv, J., Yi, D., Chen, X. W., Wang, C., Qian, S. B., and Yi, C. (2017) Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts, Mol. Cell, 68, 993-1005.e9, https://doi.org/10.1016/j.molcel.2017.10.019.
  135. Zhou, H., Kimsey, I. J., Nikolova, E. N., Sathyamoorthy, B., Grazioli, G., McSally, J., Bai, T., Wunderlich, C. H., Kreutz, C., Andricioaei, I., and Al-Hashimi, H. M. (2016) m1A and m1G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs, Nat. Struct. Mol. Biol., 23, 803-810, https://doi.org/10.1038/ nsmb.3270.
  136. Qi, Z., Zhang, C., Jian, H., Hou, M., Lou, Y., Kang, Y., Wang, W., Lv, Y., Shang, S., Wang, C., Li, X., Feng, S., and Zhou, H. (2023) N1-Methyladenosine modification of mRNA regulates neuronal gene expression and oxygen glucose deprivation/reoxygenation induction, Cell Death Discov., 9, 159, https://doi.org/10.1038/s41420-023-01458-2.
  137. Zhang, C., Yi, X., Hou, M., Li, Q., Li, X., Lu, L., Qi, E., Wu, M., Qi, L., Jian, H., Qi, Z., Lv, Y., Kong, X., Bi, M., Feng, S., and Zhou, H. (2023) The landscape of m1A modification and its posttranscriptional regulatory functions in primary neurons, Elife, 12, e85324, https://doi.org/10.7554/elife.85324.
  138. Boo, S. H., Ha, H., and Kim, Y. K. (2022) m1A and m⁶A modifications function cooperatively to facilitate rapid mRNA degradation, Cell Rep., 40, 111317, https://doi.org/10.1016/j.celrep.2022.111317.
  139. Park, O. H., Ha, H., Lee, Y., Boo, S. H., Kwon, D. H., Song, H. K., and Kim, Y. K. (2019) Endoribonucleolytic cleavage of m⁶A-containing RNAs by RNase P/MRP complex, Mol. Cell, 74, 494-507.e8, https://doi.org/10.1016/ j.molcel.2019.02.034.
  140. Lee, Y., Choe, J., Park, O. H., and Kim, Y. K. (2020) Molecular mechanisms driving mRNA degradation by m⁶A modification, Trends Genet., 36, 177-188, https://doi.org/10.1016/j.tig.2019.12.007.
  141. Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015) N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, 518, 560-564, https://doi.org/10.1038/nature14234.
  142. Guca, E., Alarcon, R., Palo, M. Z., Santos, L., Alonso-Gil, S., Davyt, M., de Lima, L. H. F., Boissier, F., Das, S., Zagrovic, B., Puglisi, J. D., Hashem, Y., and Ignatova, Z. (2024) N6-methyladenosine in 5’ UTR does not promote translation initiation, Mol. Cell, 84, 584-595.e6, https://doi.org/10.1016/j.molcel.2023.12.028.
  143. Meyer, K. D. (2019) m⁶A-mediated translation regulation, Biochim. Biophys. Acta Gene Regul. Mech., 1862, 301-309, https://doi.org/10.1016/j.bbagrm.2018.10.006.
  144. Zhang, S., Liu, Y., Ma, X., Gao, X., Ru, Y., Hu, X., and Gu, X. (2024) Recent advances in the potential role of RNA N4-acetylcytidine in cancer progression, Cell Commun. Signal., 22, https://doi.org/10.1186/s12964-023-01417-5.
  145. Dominissini, D., and Rechavi, G. (2018) N4-acetylation of cytidine in mRNA by NAT10 regulates stability and translation, Cell, 175, 1725-1727, https://doi.org/10.1016/j.cell.2018.11.037.
  146. Liu, Y., Wang, X., Liu, Y., Yang, J., Mao, W., Feng, C., Wu, X., Chen, X., Chen, L., and Dong, P. (2023) N4-acetylcytidine-dependent GLMP mRNA stabilization by NAT10 promotes head and neck squamous cell carcinoma metastasis and remodels tumor microenvironment through MAPK/ERK signaling pathway, Cell Death Dis., 14, 712, https://doi.org/10.1038/s41419-023-06245-6.
  147. Arango, D., Sturgill, D., Alhusaini, N., Dillman, A. A., Sweet, T. J., Hanson, G., Hosogane, M., Sinclair, W. R., Nanan, K. K., Mandler, M. D., Fox, S. D., Zengeya, T. T., Andresson, T., Meier, J. L., Coller, J., and Oberdoerffer, S. (2018) Acetylation of cytidine in mRNA promotes translation efficiency, Cell, 175, 1872-1886.e24, https://doi.org/ 10.1016/j.cell.2018.10.030.
  148. Arango, D., Sturgill, D., Yang, R., Kanai, T., Bauer, P., Roy, J., Wang, Z., Hosogane, M., Schiffers, S., and Oberdoerffer, S. (2022) Erratum: direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine, Mol. Cell, 82, 2797-2814.e11, https://doi.org/10.1016/j.molcel.2022.06.022.
  149. Schumann, U., Zhang, H. N., Sibbritt, T., Pan, A., Horvath, A., Gross, S., Clark, S. J., Yang, L., and Preiss, T. (2020) Multiple links between 5-methylcytosine content of mRNA and translation, BMC Biol., 18, 40, https://doi.org/10.1186/s12915-020-00769-5.
  150. Malbec, L., Zhang, T., Chen, Y. S., Zhang, Y., Sun, B. F., Shi, B. Y., Zhao, Y. L., Yang, Y., and Yang, Y. G. (2019) Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation, Cell Res., 29, 927-941, https://doi.org/10.1038/s41422-019-0230-z.
  151. Dong, R., Wang, C., Tang, B., Cheng, Y., Peng, X., Yang, X., Ni, B., and Li, J. (2024) WDR4 promotes HCC pathogenesis through N7-methylguanosine by regulating and interacting with METTL1, Cell. Signal., 118, 111145, https://doi.org/10.1016/j.cellsig.2024.111145.
  152. Schlake, T., Thess, A., Fotin-Mleczek, M., and Kallen, K.-J. (2012) Developing mRNA-vaccine technologies, RNA Biol., 9, 1319-1330, https://doi.org/10.4161/rna.22269.
  153. Carralot, J. P., Weide, B., Schoor, O., Probst, J., Scheel, B., Teufel, R., Hoerr, I., Garbe, C., Rammensee, H. G., and Pascolo, S. (2005) Production and characterization of amplified tumor-derived cRNA libraries to be used as vaccines against metastatic melanomas, Genet. Vaccines Ther., 3, 6, https://doi.org/10.1186/ 1479-0556-3-6.
  154. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., and Rossi, D. J. (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell, 7, 618-630, https://doi.org/10.1016/j.stem.2010.08.012.
  155. Weng, Y., Li, C., Yang, T., Hu, B., Zhang, M., Guo, S., Xiao, H., Liang, X.-J., and Huang, Y. (2020) The challenge and prospect of mRNA therapeutics landscape, Biotechnol. Adv., 40, 107534, https://doi.org/10.1016/ j.biotechadv.2020.107534.
  156. Malone, R. W., Felgner, P. L., and Verma, I. M. (1989) Cationic liposome-mediated RNA transfection, Proc. Natl. Acad. Sci. USA, 86, 6077-6081, https://doi.org/10.1073/pnas.86.16.6077.
  157. Karikó, K., Kuo, A., and Barnathan, E. S. (1999) Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA, Gene Ther., 6, 1092-1100, https://doi.org/10.1038/sj.gt.3300930.
  158. Kreiter, S., Selmi, A., Diken, M., Sebastian, M., Osterloh, P., Schild, H., Huber, C., Türeci, Ö., and Sahin, U. (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals, J. Immunol., 180, 309-318, https://doi.org/10.4049/jimmunol.180.1.309.
  159. Kozak, M. (1994) Features in the 5’ non-coding sequences of rabbit α and β-globin mRNAs that affect translational efficiency, J. Mol. Biol., 235, 95-110, https://doi.org/10.1016/S0022-2836(05)80019-1.
  160. Annweiler, A., Hipskind, R. A., and Wirth, T. (1991) A strategy for efficient in vitro translation of cDNAs using the rabbit β-globin leader sequence, Nucleic Acids Res., 19, 3750, https://doi.org/10.1093/nar/19.13.3750.
  161. Conry, R. M., LoBuglio, A. F., Wright, M., Sumerel, L., Pike, M. J., Johanning, F., Benjamin, R., Lu, D., and Curiel, D. T. (1995) Characterization of a messenger RNA polynucleotide vaccine vector, Cancer Res., 55, 1397-1400.
  162. Rohner, E., Yang, R., Foo, K. S., Goedel, A., and Chien, K. R. (2022) Unlocking the promise of mRNA therapeutics, 40, Nat. Biotechnol., 1586-1600, https://doi.org/10.1038/s41587-022-01491-z.
  163. Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., Kolosova, E., Sokolova, T., Zaborova, O., Kukushkin, I., Kazakova, A., Kunyk, D., Kirshina, A., Vasileva, O., Seregina, K., Pateev, I., Kolpakov, F., and Ivanov, R. (2024) Untranslated region sequences and the efficacy of mRNA vaccines against tuberculosis, Int. J. Mol. Sci., 25, 888, https://doi.org/10.3390/ijms25020888.
  164. Yu, J., and Russell, J. E. (2001) Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA, Mol. Cell. Biol., 21, 5879-5888, https://doi.org/10.1128/mcb.21.17. 5879-5888.2001.
  165. Wang, Z., Day, N., Trifillis, P., and Kiledjian, M. (1999) An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro, Mol. Cell. Biol., 19, 4552-4560, https://doi.org/10.1128/mcb.19.7.4552.
  166. Aviv, H., Voloch, Z., Bastos, R., and Levy, S. (1976) Biosynthesis and stability of globin mRNA in cultured erythroleukemic friend cells, Cell, 8, 495-503, https://doi.org/10.1016/0092-8674(76)90217-8.
  167. Waggoner, S. A., and Liebhaber, S. A. (2003) Regulation of α-globin mRNA stability, Exp. Biol. Med., 228, 387-395, https://doi.org/10.1177/153537020322800409.
  168. Holcik, M., and Liebhaber, S. A. (1997) Four highly stable eukaryotic mRNAs assemble 3’ untranslated region RNA-protein complexes sharing cis and trans components, Proc. Natl. Acad. Sci. USA, 94, 2410-2414, https://doi.org/10.1073/pnas.94.6.2410.
  169. Wollner, C. J., Richner, M., Hassert, M. A., Pinto, A. K., Brien, J. D., and Richner, J. M. (2021) A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses, J. Virol., 95, e02482-20, https://doi.org/10.1128/jvi.02482-20.
  170. Sahin, U., Derhovanessian, E., Miller, M., Kloke, B. P., Simon, P., Löwer, M., Bukur, V., Tadmor, A. D., Luxemburger, U., Schrörs, B., Omokoko, T., Vormehr, M., Albrecht, C., Paruzynski, A., Kuhn, A. N., Buck, J., Heesch, S., Schreeb, K. H., Müller, F., Ortseifer, I., Vogler, I., Godehardt, E., Attig, S., Rae, R., Breitkreuz, A., Tolliver, C., Suchan, M., Martic, G., Hohberger, A., Sorn, P., Diekmann, J., Ciesla, J., Waksmann, O., Brück, A. K., Witt, M., Zillgen, M., Rothermel, A., Kasemann, B., Langer, D., Bolte, S., Diken, M., Kreiter, S., Nemecek, R., Gebhardt, C., Grabbe, S., Höller, C., Utikal, J., Huber, C., Loquai, C., and Türeci, Ö. (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer, Nature, 547, 222-226, https://doi.org/10.1038/nature23003.
  171. Ding, X., Zhou, Y., He, J., Zhao, J., and Li, J. (2024) Enhancement of SARS-CoV-2 mRNA vaccine efficacy through the application of TMSB10 UTR for superior antigen presentation and immune activation, Vaccines, 12, 432, https://doi.org/10.3390/vaccines12040432.
  172. Orlandini von Niessen, A. G., Poleganov, M. A., Rechner, C., Plaschke, A., Kranz, L. M., Fesser, S., Diken, M., Löwer, M., Vallazza, B., Beissert, T., Bukur, V., Kuhn, A. N., Türeci, Ö., and Sahin, U. (2019) Improving mRNA-based therapeutic gene delivery by expression-augmenting 3’ UTRs identified by cellular library screening, Mol. Ther., 27, 824-836, https://doi.org/10.1016/j.ymthe.2018.12.011.
  173. Ferizi, M., Aneja, M. K., Balmayor, E. R., Badieyan, Z. S., Mykhaylyk, O., Rudolph, C., and Plank, C. (2016) Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts, Sci. Rep., 6, 39149, https://doi.org/10.1038/srep39149.
  174. Chiu, W.-W., Kinney, R. M., and Dreher, T. W. (2005) Control of translation by the 5’- and 3’-terminal regions of the dengue virus genome, J. Virol., 79, 8303-8315, https://doi.org/10.1128/jvi.79.13.8303-8315.2005.
  175. Gallie, D. R., Tanguay, R. L., and Leathers, V. (1995) The tobacco etch viral 5’ leader and poly(A) tail are functionally synergistic regulators of translation, Gene, 165, 233-238, https://doi.org/10.1016/0378-1119(95)00521-7.
  176. Tan, X., and Wan, Y. (2008) Enhanced protein expression by internal ribosomal entry site-driven mRNA translation as a novel approach for in vitro loading of dendritic cells with antigens, Hum. Immunol., 69, 32-40, https://doi.org/10.1016/j.humimm.2007.11.009.
  177. Yakubov, E., Rechavi, G., Rozenblatt, S., and Givol, D. (2010) Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors, Biochem. Biophys. Res. Commun., 394, 189-193, https://doi.org/10.1016/j.bbrc.2010.02.150.
  178. Mamaghani, S., Penna, R. R., Frei, J., Wyss, C., Mellett, M., Look, T., Weiss, T., Guenova, E., Kündig, T. M., Lauchli, S., and Pascolo, S. (2024) Synthetic mRNAs containing minimalistic untranslated regions are highly functional in vitro and in vivo, Cells, 13, 1242, https://doi.org/10.3390/cells13151242.
  179. Ma, Q., Zhang, X., Yang, J., Li, H., Hao, Y., and Feng, X. (2024) Optimization of the 5′ untranslated region of mRNA vaccines, Sci. Rep., 14, 19845, https://doi.org/10.1038/s41598-024-70792-x.
  180. Schrom, E., Huber, M., Aneja, M., Dohmen, C., Emrich, D., Geiger, J., Hasenpusch, G., Herrmann-Janson, A., Kretzschmann, V., Mykhailyk, O., Pasewald, T., Oak, P., Hilgendorff, A., Wohlleber, D., Hoymann, H. G., Schaudien, D., Plank, C., Rudolph, C., and Kubisch-Dohmen, R. (2017) Translation of angiotensin-converting enzyme 2 upon liver- and lung-targeted delivery of optimized chemically modified mRNA, Mol. Ther. Nucleic Acids, 7, 350-365, https://doi.org/10.1016/j.omtn.2017.04.006.
  181. Vivinus, S., Baulande, S., Van Zanten, M., Campbell, F., Topley, P., Ellis, J. H., Dessen, P., and Coste, H. (2001) An element within the 5’ untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation, Eur. J. Biochem., 268, 1908-1917, https://doi.org/10.1046/j.1432-1327. 2001.02064.x.
  182. Zhao, Y., Moon, E., Carpenito, C., Paulos, C. M., Liu, X., Brennan, A. L., Chew, A., Carroll, R. G., Scholler, J., Levine, B. L., Albelda, S. M., and June, C. H. (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor, Cancer Res., 70, 9053-9061, https://doi.org/10.1158/0008-5472.CAN-10-2880.
  183. Zinckgraf, J. W., and Silbart, L. K. (2003) Modulating gene expression using DNA vaccines with different 3’-UTRs influences antibody titer, seroconversion and cytokine profiles, Vaccine, 21, 1640-1649, https://doi.org/10.1016/S0264-410X(02)00740-5.
  184. Holden, K. L., Harris, E. (2004) Enhancement of dengue virus translation: role of the 3’ untranslated region and the terminal 3’ stem-loop domain, Virology, 329, 119-133, https://doi.org/10.1016/j.virol.2004.08.004.
  185. Linares-Fernández, S., Moreno, J., Lambert, E., Mercier-Gouy, P., Vachez, L., Verrier, B., and Exposito, J. Y. (2021) Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA, Mol. Ther. Nucleic Acids, 26, 945-956, https://doi.org/10.1016/j.omtn. 2021.10.007.
  186. Trepotec, Z., Aneja, M. K., Geiger, J., Hasenpusch, G., Plank, C., and Rudolph, C. (2019) Maximizing the translational yield of mRNA therapeutics by minimizing 5’-UTRs, Tissue Eng. Part A, 25, 69-79, https://doi.org/10.1089/ten.tea.2017.0485.
  187. Jia, L., Mao, Y., Ji, Q., Dersh, D., Yewdell, J. W., and Qian, S. B. (2020) Decoding mRNA translatability and stability from the 5’ UTR, Nat. Struct. Mol. Biol., 27, 814-821, https://doi.org/10.1038/s41594-020-0465-x.
  188. Mandal, P. K., and Rossi, D. J. (2013) Reprogramming human fibroblasts to pluripotency using modified mRNA, Nat. Protoc., 8, 568-582, https://doi.org/10.1038/nprot.2013.019.
  189. Lee, J., Dykstra, B., Spencer, J. A., Kenney, L. L., Greiner, D. L., Shultz, L. D., Brehm, M. A., Lin, C. P., Sackstein, R., and Rossi, D. J. (2017) MRNA-mediated glycoengineering ameliorates deficient homing of human stem cell-derived hematopoietic progenitors, J. Clin. Invest., 127, 2433-2437, https://doi.org/10.1172/JCI92030.
  190. Richner, J. M., Himansu, S., Dowd, K. A., Butler, S. L., Salazar, V., Fox, J. M., Julander, J. G., Tang, W. W., Shresta, S., Pierson, T. C., Ciaramella, G., and Diamond, M. S. (2017) Modified mRNA vaccines protect against Zika virus infection, Cell, 168, 1114-1125.e10, https://doi.org/10.1016/j.cell.2017.02.017.
  191. Xia, X. (2021) Detailed dissection and critical evaluation of the Pfizer/BioNTech and Moderna mRNA vaccines, Vaccines, 9, 734, https://doi.org/10.3390/vaccines9070734.
  192. Ringnér, M., and Krogh, M. (2005) Folding free energies of 5’-UTRs impact post-transcriptional regulation on a genomic scale in yeast, PLoS Comput. Biol., 1, e72, https://doi.org/10.1371/journal.pcbi.0010072.
  193. Pelletier, J., and Sonenberg, N. (1985) Insertion mutagenesis to increase secondary structure within the 5’ noncoding region of a eukaryotic mRNA reduces translational efficiency, Cell, 40, 515-526, https://doi.org/10.1016/ 0092-8674(85)90200-4.
  194. Karollus, A., Avsec, Ž., and Gagneur, J. (2021) Predicting mean ribosome load for 5’UTR of any length using deep learning, PLoS Comput. Biol., 17, e1008982, https://doi.org/10.1371/journal.pcbi.1008982.
  195. Linder, J., and Seelig, G. (2021) Fast activation maximization for molecular sequence design, BMC Bioinformatics, 22, 510, https://doi.org/10.1186/s12859-021-04437-5.
  196. Barazandeh, S., Ozden, F., Hincer, A., Seker, U. O. S., and Cicek, A. E. (2023) UTRGAN: learning to generate 5’ UTR sequences for optimized translation efficiency and gene expression, bioRxiv, https://doi.org/10.1101/ 2023.01.30.526198.
  197. Linder, J., Bogard, N., Rosenberg, A. B., and Seelig, G. (2020) A generative neural network for maximizing fitness and diversity of synthetic DNA and protein sequences, Cell Syst., 11, 49-62.e16, https://doi.org/10.1016/ j.cels.2020.05.007.
  198. Li, G., Wu, J., and Wang, X. (2024) Predicting functional UTR variants by integrating region-specific features, Brief. Bioinform., 25, bbae248, https://doi.org/10.1093/bib/bbae248.
  199. Zhang, H., Gao, X., Zhang, J., and Lai, L. (2025) mRNA2vec: mRNA embedding with language model in the 5’UTR-CDS for mRNA design, Proc. Thirty-Ninth AAAI Conf. Artif. Intell., 1, 1057-1065.
  200. Brar, G. A., and Weissman, J. S. (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis, Nat. Rev. Mol. Cell Biol., 16, 651-664, https://doi.org/10.1038/nrm4069.
  201. Chassé, H., Boulben, S., Costache, V., Cormier, P., and Morales, J. (2017) Analysis of translation using polysome profiling, Nucleic Acids Res., 45, e15, https://doi.org/10.1093/nar/gkw907.
  202. Zheng, Y., and VanDusen, N. J. (2023) Massively parallel reporter assays for high-throughput in vivo analysis of cis-regulatory elements, J. Cardiovasc. Dev. Dis., 10, 144, https://doi.org/10.3390/jcdd10040144.
  203. Gallego Romero, I., and Lea, A. J. (2023) Leveraging massively parallel reporter assays for evolutionary questions, Genome Biol., 24, 26, https://doi.org/10.1186/s13059-023-02856-6.
  204. Griesemer, D., Xue, J. R., Reilly, S. K., Ulirsch, J. C., Kukreja, K., Davis, J. R., Kanai, M., Yang, D. K., Butts, J. C., Guney, M. H., Luban, J., Montgomery, S. B., Finucane, H. K., Novina, C. D., Tewhey, R., and Sabeti, P. C. (2021) Genome-wide functional screen of 3’UTR variants uncovers causal variants for human disease and evolution, Cell, 184, 5247-5260.e19, https://doi.org/10.1016/j.cell.2021.08.025.
  205. Lagunas, T., Plassmeyer, S. P., Fischer, A. D., Friedman, R. Z., Rieger, M. A., Selmanovic, D., Sarafinovska, S., Sol, Y. K., Kasper, M. J., Fass, S. B., Aguilar Lucero, A. F., An, J. Y., Sanders, S. J., Cohen, B. A., and Dougherty, J. D. (2023) A Cre-dependent massively parallel reporter assay allows for cell-type specific assessment of the functional effects of non-coding elements in vivo, Commun. Biol., 6, 1151, https://doi.org/10.1038/s42003-023-05483-w.
  206. Reynoso, M. A., Juntawong, P., Lancia, M., Blanco, F. A., Bailey-Serres, J., and Zanetti, M. E. (2015) Translating ribosome affinity purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes, Methods Mol. Biol., 1284, 185-207, https://doi.org/10.1007/978-1-4939-2444-8_9.
  207. Blahetek, G., Mayer, C., Zuber, J., Lenter, M., and Strobel, B. (2024) Suppression of toxic transgene expression by optimized artificial miRNAs increases AAV vector yields in HEK-293 cells, Mol. Ther. Methods Clin. Dev., 32, 101208, https://doi.org/10.1016/j.omtm.2024.101280.
  208. Perez-Garcia, C. G., Diaz-Trelles, R., Vega, J. B., Bao, Y., Sablad, M., Limphong, P., Chikamatsu, S., Yu, H., Taylor, W., Karmali, P. P., Tachikawa, K., and Chivukula, P. (2022) Development of an mRNA replacement therapy for phenylketonuria, Mol. Ther. Nucleic Acids, 28, 87-98, https://doi.org/10.1016/j.omtn.2022.02.020.
  209. Gadalla, K. K. E., Vudhironarit, T., Hector, R. D., Sinnett, S., Bahey, N. G., Bailey, M. E. S., Gray, S. J., and Cobb, S. R. (2017) Development of a novel AAV gene therapy cassette with improved safety features and efficacy in a mouse model of Rett syndrome, Mol. Ther. Methods Clin. Dev., 5, 180-190, https://doi.org/10.1016/j.omtm. 2017.04.007.
  210. Artemyev, V., Gubaeva, A., Paremskaia, A. I., Dzhioeva, A. A., Deviatkin, A., Feoktistova, S. G., Mityaeva, O., and Volchkov, P. Y. (2024) Synthetic promoters in gene therapy: design approaches, features and applications, Cells, 13, 1963, https://doi.org/10.3390/cells13231963.
  211. Paremskaia, A. I., Kogan, A. A., Murashkina, A., Naumova, D. A., Satish, A., Abramov, I. S., Feoktistova, S. G., Mityaeva, O. N., Deviatkin, A. A., and Volchkov, P. Y. (2024) Codon-optimization in gene therapy: promises, prospects and challenges, Front. Bioeng. Biotechnol., 12, 1371596, https://doi.org/10.3389/fbioe.2024.1371596.
  212. Gentner, B., and Naldini, L. (2012) Exploiting microRNA regulation for genetic engineering, Tissue Antigens, 80, 393-403, https://doi.org/10.1111/tan.12002.
  213. Geisler, A., Jungmann, A., Kurreck, J., Poller, W., Katus, H. A., Vetter, R., Fechner, H., and Müller, O. J. (2011) MicroRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors, Gene Ther., 18, 199-209, https://doi.org/10.1038/gt.2010.141.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of mRNA-based therapeutics: mRNA vaccine (left) and AAV vector-based drug (right). mRNA vaccine contains translation-ready mRNA encapsulated in liposomes. After release from the liposome in the cell, mRNA is translated by the cell's ribosomes. The synthesized protein functions as an antigen stimulating the body's immune response or as a therapeutic protein compensating for defective cellular proteins. AAV vectors are single-stranded DNA encoding a transgene surrounded by inverted terminal repeats (ITRs), a transcription promoter, and a polyadenylation signal (pA). The DNA is enclosed in a viral capsid membrane. After cellular uptake of the vector and removal of the capsid membrane, the AAV gene is transcribed in the nucleus. The resulting mRNA is then exported into the cytoplasm, where translation leads to the synthesis of the therapeutic protein, which carries out its function.

Download (1MB)
3. Fig. 2. Schematic representation of regulatory regions in the 5′ UTR and 3′ UTR that affect translation efficiency and mRNA stability. Legend: uORF, upstream open reading frame; lncRNA, long non-coding RNA; RBP, RNA binding protein; miRBS, miRNA binding site; miRISC, miRNA-induced silencing complex.

Download (798KB)
4. Fig. 3. Principles of tissue-specific 3′ UTR design. It should be noted that this approach has been successfully implemented using AAV as an example, but its principles can also be applied to mRNA therapy, which opens up prospects for future research. a – The AAV vector expression cassette contains tissue-specific miRNA binding sites in the 3′ UTR. Inclusion of miRBSs for miRNAs present in non-target tissues or cells allows for a decrease in off-target transgene expression. b – The AAV vector enters the cell and enters the nucleus, where the transgene mRNA is transcribed. Following transcription and nuclear export, the tissue-specific miRNA within the miRISC binds to the miRBS in the synthesized mRNA, causing suppression of its expression due to translational repression and/or degradation of the transgene mRNA in non-target cells.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences