Biotechnologies of plant resistance to viruses: CRISPR-Cas or rna interference

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Recently developed genetic technologies of gene editing (CRISPR-Cas) and RNA interference (RNAi) have already led to significant progress in almost all areas of life sciences, including biotechnology and medicine, and are now becoming increasingly popular in plant biology. In this review, we describe the basic principles of these two technologies and methods of their application on model plants and crops for the control of viral diseases. Examples of the antiviral effect of these technologies aimed at direct suppression of viral genomes of DNA and RNA-containing viruses, as well as suppression of the activity of host plant genes that increase susceptibility to viruses, are provided. The review contains a detailed comparison of the effectiveness of RNAi and CRISPR-Cas in protecting plants from viruses. The advantages and disadvantages of these technologies as well as the factors limiting their use in practice and ways to overcome them are discussed in detail.

全文:

受限制的访问

作者简介

N. Kalinina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: kalinina@belozersky.msu.ru
俄罗斯联邦, 117997 Moscow; 119234 Moscow

N. Spechenkova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: kalinina@belozersky.msu.ru
俄罗斯联邦, 117997 Moscow

M. Taliansky

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: kalinina@belozersky.msu.ru
俄罗斯联邦, 117997 Moscow

参考

  1. Tatineni, S., and Hein, G. L. (2023) Plant viruses of agricultural importance: current and future perspectives of virus disease management strategies, Phytopathology, 113, 117-141, https://doi.org/10.1094/PHYTO-05-22-0167-RVW.
  2. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., and Daszak, P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers, Trends Ecol. Evol., 19, 535-544, https://doi.org/10.1016/j.tree.2004.07.021.
  3. Lacomme, C., Pickup, J., Fox, A., Glais, L., Dupuis, B., Steinger, T., Rolot, J., Valkonen, J. P. T., Kruger, K., Nie, X., Modic, S., Mehle, N., Ravnikar, M., and Hullé, M. (2017) Transmission and epidemiology of Potato virus Y, In Potato virus Y: biodiversity, pathogenicity, epidemiology and management (Lacomme, C., Glais, L., Bellstedt, D. U., Dupuis, B., Karasev, A. V., et al., eds) pp. 141-176, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-58860-5_6.
  4. Van Esse, H. P., Reuber, T. L., and van der Does, D. (2020) Genetic modification to improve disease resistance in crops, New Phytol., 225, 70-86, https://doi.org/10.1111/nph.15967.
  5. Rubio, L., Galipienso, L., and Ferriol, I. (2020) Detection of plant viruses and disease management: relevance of genetic diversity and evolution, Front. Plant Sci., 11, 1092, https://doi.org/10.3389/fpls.2020.01092.
  6. Cillo, F., and Palukaitis, P. (2014) Chapter two – transgenic resistance, In Advances in Virus Research (Loebenstein, G., and Katis, N., eds) pp. 35-146, Academic Press, https://doi.org/10.1016/B978-0-12-801246-8.00002-0.
  7. Sudarshana, M. R., Roy, G., and Falk, B. W. (2007) Methods for engineering resistance to plant viruses, Methods Mol. Biol., 354, 183-195, https://doi.org/10.1385/1-59259-966-4:183.
  8. Reddy, D. V. R., Sudarshana, M. R., Fuchs, M., Rao, N. C., and Thottappilly, G. (2009) Chapter 6 – genetically engineered virus-resistant plants in developing countries: current status and future prospects, In Advances in Virus Research (Loebenstein, G., and Carr, J. P., eds) pp. 185-220, Academic Press, https://doi.org/10.1016/ S0065-3527(09)07506-X.
  9. Palukaitis, P. (2012) Resistance to viruses of potato and their vectors, Plant Pathol. J., 28, 248-258, https://doi.org/10.5423/PPJ.RW.06.2012.0075.
  10. Arif, M., Azhar, U., Arshad, M., Zafar, Y., Mansoor, S., and Asad, S. (2012) Engineering broad-spectrum resistance against RNA viruses in potato, Transgen. Res., 21, 303-311, https://doi.org/10.1007/s11248-011-9533-7.
  11. Duffy, S. (2018) Why are RNA virus mutation rates so damn high? PLoS Biol., 16, e3000003, https://doi.org/10.1371/journal.pbio.3000003.
  12. Kalinina, N. O., Khromov, A., Love, A. J., and Taliansky, M. E. (2020) CRISPR applications in plant virology: virus resistance and beyond, Phytopathology, 110, 18-28, https://doi.org/10.1094/PHYTO-07-19-0267-IA.
  13. Zhao, Y., Yang, X., Zhou, G., and Zhang, T. (2020) Engineering plant virus resistance: from RNA silencing to genome editing strategies, Plant Biotechnol. J., 18, 328-336, https://doi.org/10.1111/pbi.13278.
  14. Cao, Y., Zhou, H., Zhou, X., and Li, F. (2020) Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity, Front. Microbiol., 11, 593700, https://doi.org/10.3389/fmicb.2020.593700.
  15. Chattopadhyay, R., Firdous, Z., and Bari, V. K. (2025) CRISPR/Cas9 and its derivatives to improve crop biotic stress resistance: current status and prospects, Physiol. Mol. Plant Pathol., 135, 102482, https://doi.org/10.1016/ j.pmpp.2024.102482.
  16. Jeyaraj, G., Alphonse, V., Jayanthi, P., Angelin, F. N., Geetanjali, A. S., and Govindan, G. (2024) Harnessing the potential of CRISPR/Cas system for enhancing virus resistance in plants: targets, strategies, and challenges, Physiol. Mol. Plant Pathol., 129, 102202, https://doi.org/10.1016/j.pmpp.2023.102202.
  17. Taliansky, M., Samarskaya, V., Zavriev, S. K., Fesenko, I., Kalinina, N. O., and Love, A. J. (2021) RNA-based technologies for engineering plant virus resistance, Plants, 10, 82, https://doi.org/10.3390/plants10010082.
  18. Venu, E., Ramya, A., Babu, P. L., Srinivas, B., Kumar, S., Reddy, N. K., Babu, Y. M., Majumdar, A., and Manik, S. (2025) Exogenous dsRNA-mediated RNAi: mechanisms, applications, delivery methods and challenges in the induction of viral disease resistance in plants, Viruses, 17, 49, https://doi.org/10.3390/v17010049.
  19. Collinge, D. B., Jørgensen, H. J. L., Lund, O. S., and Lyngkjær, M. F. (2010) Engineering pathogen resistance in crop plants: current trends and future prospects, Annu. Rev. Phytopathol., 48, 269-291, https://doi.org/10.1146/annurev-phyto-073009-114430.
  20. Thompson, J. R., and Tepfer, M. (2010) Chapter 2 – assessment of the benefits and risks for engineered virus resistance, In Advances in Virus Research (Carr, J. P., and Loebenstein, G., eds) pp. 33-56, Academic Press, https://doi.org/10.1016/S0065-3527(10)76002-4.
  21. Wang, M.-B., Masuta, C., Smith, N. A., and Shimura, H. (2012) RNA silencing and plant viral diseases, Mol. Plant Microbe Interact., 25, 1275-1285, https://doi.org/10.1094/MPMI-04-12-0093-CR.
  22. Morozov, S. Yu., Solovyev, A. G., Kalinina, N. O., and Taliansky, M. (2019) Double-stranded RNAs in plant protection against pathogenic organisms and viruses in agriculture, Acta Naturae, 11, 13-21, https://doi.org/10.32607/ 20758251-2019-11-4-13-21.
  23. Zhang, B., Li, W., Zhang, J., Wang, L., and Wu, J. (2019) Roles of small RNAs in virus-plant interactions, Viruses, 11, 827, https://doi.org/10.3390/v11090827.
  24. Taning, C. N., Arpaia, S., Christiaens, O., Dietz-Pfeilstetter, A., Jones, H., Mezzetti, B., Sabbadini, S., Sorteberg, H., Sweet, J., Ventura, V., and Smagghe, G. (2020) RNA-based biocontrol compounds: current status and perspectives to reach the market, Pest Manag. Sci., 76, 841-845, https://doi.org/10.1002/ps.5686.
  25. Zhan, X., Zhang, F., Li, N., Xu, K., Wang, X., Gao, S., Yin, Y., Yuan, W., Chen, W., Ren, Z., Yao, M., and Wang, F. (2024) CRISPR/Cas: an emerging toolbox for engineering virus resistance in plants, Plants, 13, 3313, https://doi.org/10.3390/plants13233313.
  26. Makarova, S. S., Khromov, A. V., Spechenkova, N. A., Taliansky, M. E., and Kalinina, N. O. (2018) Application of the CRISPR/Cas system for generation of pathogen-resistant plants, Biochemistry (Moscow), 83, 1552-1562, https://doi.org/10.1134/S0006297918120131.
  27. Bhaya, D., Davison, M., and Barrangou, R. (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation, Annu. Rev. Genet., 45, 273-297, https://doi.org/10.1146/annurev-genet-110410-132430.
  28. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013) RNA-guided human genome engineering via Cas9, Science, 339, 823-826, https://doi.org/10.1126/science.1232033.
  29. Mahas, A., and Mahfouz, M. (2018) Engineering virus resistance via CRISPR-Cas systems, Curr. Opin. Virol., 32, 1-8, https://doi.org/10.1016/j.coviro.2018.06.002.
  30. Kis, A., Hamar, É., Tholt, G., Bán, R., and Havelda, Z. (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system, Plant Biotechnol. J., 17, 1004-1006, https://doi.org/ 10.1111/pbi.13077.
  31. Liu, H., Soyars, C. L., Li, J., Fei, Q., He, G., Peterson, B. A., Meyers, B. C., Nimchuk, Z. L., and Wang, X. (2018) CRISPR/Cas9-mediated resistance to cauliflower mosaic virus, Plant Direct, 2, e00047, https://doi.org/10.1002/pld3.47.
  32. Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., and Zhou, G. (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system, Plant Biotechnol. J., 16, 1415-1423, https://doi.org/10.1111/pbi.12881.
  33. Zhang, T., Zhao, Y., Ye, J., Cao, X., Xu, C., Chen, B., An, H., Jiao, Y., Zhang, F., Yang, X., and Zhou, G. (2019) Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants, Plant Biotechnol. J., 17, 1185, https://doi.org/10.1111/pbi.13095.
  34. Bastet, A., Robaglia, C., and Gallois, J.-L. (2017) eIF4E resistance: natural variation should guide gene editing, Trends Plant Sci., 22, 411-419, https://doi.org/10.1016/j.tplants.2017.01.008.
  35. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology, Mol. Plant Pathol., 17, 1140-1153, https://doi.org/10.1111/mpp.12375.
  36. Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Čermák, T., Voytas, D. F., Choi, I. R., and Chadha-Mohanty, P. (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus, Plant Biotechnol. J., 16, 1918-1927, https://doi.org/10.1111/pbi.12927.
  37. Gomez, M. A., Lin, Z. D., Moll, T., Chauhan, R. D., Hayden, L., Renninger, K., Beyene, G., Taylor, N. J., Carrington, J. C., Staskawicz, B. J., and Bart, R. S. (2019) Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence, Plant Biotechnol. J., 17, 421-434, https://doi.org/10.1111/pbi.12987.
  38. Pyott, D. E., Sheehan, E., and Molnar, A. (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants, Mol. Plant Pathol., 17, 1276-1288, https://doi.org/10.1111/mpp.12417.
  39. Bastet, A., Zafirov, D., Giovinazzo, N., Guyon-Debast, A., Nogué, F., Robaglia, C., and Gallois, J. (2019) Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses, Plant Biotechnol. J., 17, 1736-1750, https://doi.org/10.1111/pbi.13096.
  40. Pramanik, D., Shelake, R. M., Park, J., Kim, M. J., Hwang, I., Park, Y., and Kim, J. (2021) CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew, Int. J. Mol. Sci., 22, 1878, https://doi.org/10.3390/ijms22041878.
  41. Sun, H., Shen, L., Qin, Y., Liu, X., Hao, K., Li, Y., Wang, J., Yang, J., and Wang, F. (2018) CLC-Nt1 affects Potato Virus Y infection via regulation of endoplasmic reticulum luminal Ph, New Phytol., 220, 539-552, https://doi.org/ 10.1111/nph.15310.
  42. Makhotenko, A. V., Khromov, A. V., Snigir, E. A., Makarova, S. S., Makarov, V. V., Suprunova, T. P., Kalinina, N. O., and Taliansky, M. E. (2019) Functional analysis of coilin in virus resistance and stress tolerance of potato solanum tuberosum using CRISPR-Cas9 editing, Doklady Biochem. Biophys., 484, 88-91, https://doi.org/10.1134/S1607672919010241.
  43. Sekine, K.-T., Nandi, A., Ishihara, T., Hase, S., Ikegami, M., Shah, J., and Takahashi, H. (2004) Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism, Mol. Plant Microbe Interact., 17, 623-632, https://doi.org/10.1094/MPMI.2004.17.6.623.
  44. Bortesi, L., and Fischer, R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond, Biotechnol. Adv., 33, 41-52, https://doi.org/10.1016/j.biotechadv.2014.12.006.
  45. Wolter, F., and Puchta, H. (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists, Plant J., 94, 767-775, https://doi.org/10.1111/tpj.13899.
  46. Khromov, A., Makhotenko, A. V., Snigir, E. V., Makarova, S. S., Makarov, V., Suprunova, T., Miroshnichenko, D., Kalinina, N. O., Dolgov, S., and Taliansky, M. E. (2018) Delivery of CRISPR/Cas9 ribonucleoprotein complex to apical meristem cells for DNA-free editing of potato solanum tuberosum genome, Biotekhnologiya, 34, 51-58, https://doi.org/10.21519/0234-2758-2018-34-6-51-58.
  47. Khromov, A. V., Makhotenko, A. V., Makarova, S. S., Suprunova, T. P., Kalinina, N. O., and Taliansky, M. E. (2020) Delivery of CRISPR/Cas9 ribonucleoprotein complex into plant apical meristem cells leads to large deletions in an editing gene, Russ. J. Bioorg. Chem., 46, 1242-1249, https://doi.org/10.1134/S1068162020060138.
  48. Kosicki, M., Tomberg, K., and Bradley, A. (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol., 6, 765-771, https://doi.org/10.1038/nbt.4192.
  49. East-Seletsky, A., O’Connell, M. R., Knight, S. C., Burstein, D., Cate, J. H. D., Tjian, R., and Doudna, J. A. (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature, 538, 270-273, https://doi.org/10.1038/nature19802.
  50. Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., and Zhang, F. (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6, Science, 360, 439-444, https://doi.org/10.1126/science.aaq0179.
  51. Sanford, J. C., and Johnston, S. A. (1985) The concept of parasite-derived resistance – deriving resistance genes from the parasite’s own genome, J. Theor. Biol., 113, 395-405, https://doi.org/10.1016/S0022-5193(85)80234-4.
  52. Kumar, G., Jyothsna, M., Valarmathi, P., Roy, S., Banerjee, A., Tarafdar, J., Senapati, B. K., Robin, S., Manonmani, S., Rabindran, R., and Dasgupta, I. (2019) Assessment of resistance to rice tungro disease in popular rice varieties in India by introgression of a transgene against Rice tungro bacilliform virus, Arch. Virol., 164, 1005-1013, https://doi.org/10.1007/s00705-019-04159-3.
  53. Baulcombe, D. C. (2022) The role of viruses in identifying and analyzing RNA silencing, Annu. Rev. Virol., 9, 353-373, https://doi.org/10.1146/annurev-virology-091919-064218.
  54. Lopez-Gomollon, S., and Baulcombe, D. C. (2022) Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems, Nat. Rev. Mol. Cell Biol., 23, 645-662, https://doi.org/10.1038/s41580-022-00496-5.
  55. Das, P. R., and Sherif, S. M. (2020) Application of exogenous dsRNAs-induced RNAi in agriculture: challenges and triumphs, Front. Plant Sci., 11, 946, https://doi.org/10.3389/fpls.2020.00946.
  56. Dubrovina, A. S., and Kiselev, K. V. (2019) Exogenous RNAs for gene regulation and plant resistance, Int. J. Mol. Sci., 20, 2282, https://doi.org/10.3390/ijms20092282.
  57. Hernández-Soto, A., and Chacón-Cerdas, R. (2021) RNAi crop protection advances, Int. J. Mol. Sci., 22, 12148, https://doi.org/10.3390/ijms222212148.
  58. Rêgo-Machado, C. M., Inoue-Nagata, A. K., and Nakasu, E. Y. T. (2023) Topical application of dsRNA for plant virus control: a review, Tropical Plant Pathol., 48, 11-22, https://doi.org/10.1007/s40858-022-00534-9.
  59. Necira, K., Makki, M., Sanz-García, E., Canto, T., Djilani-Khouadja, F., and Tenllado, F. (2021) Topical application of Escherichia coli-encapsulated dsRNA induces resistance in Nicotiana benthamiana to potato viruses and involves RDR6 and combined activities of DCL2 and DCL4, Plants, 10, 644, https://doi.org/10.3390/ plants10040644.
  60. Delgado-Martín, J., Ruiz, L., Janssen, D., and Velasco, L. (2022) Exogenous application of dsRNA for the control of viruses in cucurbits, Front. Plant Sci., 13, 895953, https://doi.org/10.3389/fpls.2022.895953.
  61. Nityagovsky, N. N., Kiselev, K. V., Suprun, A. R., and Dubrovina, A. S. (2022) Exogenous dsRNA induces RNA interference of a chalcone synthase gene in Arabidopsis thaliana, Int. J. Mol. Sci., 23, 5325, https://doi.org/10.3390/ijms23105325.
  62. Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q., and Xu, Z. P. (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses, Nat. Plants, 3, 1-10, https://doi.org/10.1038/nplants.2016.207.
  63. Tabein, S., Jansen, M., Noris, E., Vaira, A. M., Marian, D., Behjatnia, S. A. A., Accotto, G. P., and Miozzi, L. (2020) The induction of an effective dsRNA-mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region, Front. Plant Sci., 11, 533338, https://doi.org/10.3389/fpls.2020.533338.
  64. Rego-Machado, C. M., Nakasu, E. Y. T., Silva, J. M. F., Lucinda, N., Nagata, T., and Inoue-Nagata, A. K. (2020) siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants, Sci. Rep., 10, 22277, https://doi.org/10.1038/s41598-020-79360-5.
  65. Konakalla, N. C., Bag, S., Deraniyagala, A. S., Culbreath, A. K., and Pappu, H. R. (2021) Induction of plant resistance in tobacco (Nicotiana tabacum) against tomato spotted wilt orthotospovirus through foliar application of dsRNA, Viruses, 13, 662, https://doi.org/10.3390/v13040662.
  66. Samarskaya, V. O., Spechenkova, N., Markin, N., Suprunova, T. P., Zavriev, S. K., Love, A. J., Kalinina, N. O., and Taliansky, M. E. (2022) Impact of exogenous application of potato virus Y-specific dsRNA on RNA interference, pattern-triggered immunity and poly(ADP-ribose) metabolism, Int. J. Mol. Sci., 23, 7915, https://doi.org/10.3390/ijms23147915.
  67. Samarskaya, V. O., Spechenkova, N., Ilina, I., Suprunova, T. P., Kalinina, N. O., Love, A. J., and Taliansky, M. E. (2023) A non-canonical pathway induced by externally applied virus-specific dsRNA in potato plants, Int. J. Mol. Sci., 24, 15769, https://doi.org/10.3390/ijms242115769.
  68. Niehl, A., Wyrsch, I., Boller, T., and Heinlein, M. (2016) Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants, New Phytol., 211, 1008-1019, https://doi.org/10.1111/nph.13944.
  69. Niehl, A., and Heinlein, M. (2019) Perception of double-stranded RNA in plant antiviral immunity, Mol. Plant Pathol., 20, 1203-1210, https://doi.org/10.1111/mpp.12798.
  70. Chow, K. T., Gale, M., and Loo, Y.-M. (2018) RIG-I and other RNA sensors in antiviral immunity, Annu. Rev. Immunol., 36, 667-694, https://doi.org/10.1146/annurev-immunol-042617-053309.
  71. Hartmann, G. (2017) Nucleic acid immunity, Adv. Immunol., 133, 121-169, https://doi.org/10.1016/bs.ai.2016.11.001.
  72. Lee, B., Park, Y.-S., Lee, S., Song, G. C., and Ryu, C.-M. (2016) Bacterial RNAs activate innate immunity in Arabidopsis, New Phytol., 209, 785-797, https://doi.org/10.1111/nph.13717.
  73. Kørner, C. J., Klauser, D., Niehl, A., Domínguez-Ferreras, A., Chinchilla, D., Boller, T., Heinlein, M., and Hann, D. R. (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses, Mol. Plant Microbe Int., 26, 1271-1280, https://doi.org/10.1094/MPMI-06-13-0179-R.
  74. Zvereva, A. S., Golyaev, V., Turco, S., Gubaeva, E. G., Rajeswaran, R., Schepetilnikov, M. V., Srour, O., Ryabova, L. A., Boller, T., and Pooggin, M. M. (2016) Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants, New Phytol., 211, 1020-1034, https://doi.org/10.1111/nph.13967.
  75. Necira, K., Contreras, L., Kamargiakis, E., Kamoun, M. S., Canto, T., and Tenllado, F. (2024) Comparative analysis of RNA interference and pattern-triggered immunity induced by dsRNA reveals different efficiencies in the antiviral response to potato virus X, Mol. Plant Pathol., 25, e70008, https://doi.org/10.1111/mpp.70008.
  76. Spechenkova, N., Kalinina, N. O., Zavriev, S. K., Love, A. J., and Taliansky, M. (2023) ADP-ribosylation and antiviral resistance in plants, Viruses, 15, 241, https://doi.org/10.3390/v15010241.
  77. Vainonen, J. P., Shapiguzov, A., Vaattovaara, A., and Kangasjärvi, J. (2016) Plant PARPs, PARGs and PARP-like proteins, Curr. Protein Peptide Sci., 17, 713-723, https://doi.org/10.2174/1389203717666160419144721.
  78. Betting, V., and Van Rij, R. P. (2020) Countering counter-defense to antiviral RNAi, Trends Microbiol., 28, 600-602, https://doi.org/10.1016/j.tim.2020.05.018.
  79. Bennett, M., Deikman, J., Hendrix, B., and Iandolino, A. (2020) Barriers to efficient foliar uptake of dsRNA and molecular barriers to dsRNA activity in plant cells, Front. Plant Sci., 11, https://doi.org/10.3389/fpls. 2020.00816.
  80. Hoang, B. T. L., Fletcher, S. J., Brosnan, C. A., Ghodke, A. B., Manzie, N., and Mitter, N. (2022) RNAi as a foliar spray: efficiency and challenges to field applications, Int. J. Mol. Sci., 23, 6639, https://doi.org/10.3390/ijms23126639.
  81. Dalakouras, A., Wassenegger, M., Dadami, E., Ganopoulos, I., Pappas, M. L., and Papadopoulou, K. (2020) Genetically modified organism-free RNA interference: exogenous application of RNA molecules in plants, Plant Physiol., 182, 38-50, https://doi.org/10.1104/pp.19.00570.
  82. AgroSpheres, URL: https://www.agrospheres.com/.
  83. Hough, J., Howard, J. D., Brown, S., Portwood, D. E., Kilby, P. M., and Dickman, M. J. (2022) Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides, Front. Bioeng. Biotechnol., 10, 980592, https://doi.org/10.3389/fbioe.2022.980592.
  84. GreenLight Biosciences, URL: https://www.greenlightbiosciences.com/.
  85. Johansen, I. E., Liu, Y., Jørgensen, B., Bennett, E. P., Andreasson, E., Nielsen, K. L., Blennow, A., and Petersen, B. L. (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato, Sci. Rep., 9, 17715, https://doi.org/10.1038/s41598-019-54126-w.
  86. Ali, Z., Ali, S., Tashkandi, M., Zaidi, S. S.-A., and Mahfouz, M. M. (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion, Sci. Rep., 6, 26912, https://doi.org/10.1038/srep26912.
  87. Mehta, D., Stürchler, A., Anjanappa, R. B., Zaidi, S. S.-A., Hirsch-Hoffmann, M., Gruissem, W., and Vanderschuren, H. (2019) Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses, Genome Biol., 20, 80, https://doi.org/10.1186/s13059-019-1678-3.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Advantages and disadvantages of CRISPR-Cas and RNA interference technologies in plant protection against viral infections

下载 (2MB)

版权所有 © Russian Academy of Sciences, 2025