Simulation of processes initiated in nickel nitrate aqueous solution by an atmospheric pressure DC gas discharge
- Authors: Shutov D.A.1, Ivanov A.N.1, Ignat’eva P.A.1, Rybkin V.V.1
-
Affiliations:
- Ivanovo State University of Chemistry and Technology
- Issue: Vol 50, No 7 (2024)
- Pages: 805-818
- Section: LOW TEMPERATURE PLASMA
- URL: https://consilium.orscience.ru/0367-2921/article/view/683720
- DOI: https://doi.org/10.31857/S0367292124070101
- EDN: https://elibrary.ru/OIKEWD
- ID: 683720
Cite item
Full Text
Abstract
We propose a 0-D model describing processes in a system comprising an atmospheric pressure DC discharge and aqueous nickel nitrate solution. The model is represented as two coupled subsystems: plasma and solution. Characteristics of the discharge plasma have been determined by jointly solving the Boltzmann equation for electrons; equations of vibrational kinetics for the ground states of N2, O2, NO, H2, and H2O molecules; and equations of chemical kinetics (328 reactions, 34 components). In doing so, use was made of experimentally determined reduced electric field strength and vibrational and gas temperatures. The kinetics of the processes in the solution included 121 reactions and 34 components. The calculation results agree with experimental data on the vibrational temperatures of N2(X) molecules, the kinetics of the decrease in Ni2+ concentration, and the variation in solution pH. We have determined the degree of Ni2+ conversion and the energy yield of conversion and identified the mechanisms that determine the concentration of the major solution components.
Keywords
About the authors
D. A. Shutov
Ivanovo State University of Chemistry and Technology
Author for correspondence.
Email: shutov@isuct.ru
Russian Federation, Ivanovo, 153000
A. N. Ivanov
Ivanovo State University of Chemistry and Technology
Email: ivanovan@isuct.ru
Russian Federation, Ivanovo, 153000
P. A. Ignat’eva
Ivanovo State University of Chemistry and Technology
Email: poliv3@mail.ru
Russian Federation, Ivanovo, 153000
V. V. Rybkin
Ivanovo State University of Chemistry and Technology
Email: rybkin@isuct.ru
Russian Federation, Ivanovo, 153000
References
- Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.D.E., Graham W.G., Graves D.B., Hofman-Caris R.C., Maric D., Reid J.P., Ceriani E., Fernandez Riva D., Foster J.E., Garrick S.C., Gorbanev Y., Hamaguchi S., Iza F., Jablonowski H., Klimova E., Kolb J., Krcma F., Lukes P., Machala Z., Marinov I., Mariotti D., Mededovic Thagard S., Minakata D., Neyts E.C., Pawlat J., Petrovic Z.Lj., Pflieger R., Reuter S., Schram D.C., Schroter S., Shiraiwa M., Tarabova B., Tsai P.A., Verlet J.R.R., von Woedtke T., Wilson K.R., Yasui K., Zvereva G. // Plasma Sources Sci. Technol. 2016. V. 25. P. 053002. https://doi.org/10.1088/0963-0252/25/5/053002
- Kovacević V. V., Sretenović G. B., Obradović B. M., Kuraica M. M. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 473002. doi: 10.1088/1361-6463/ac8a56
- Grinevich V.I., Kvitkova E.Y., Plastinina N.A., Rybkin V.V. // Plasma Chem. Plasma Process. 2011. V.31. P. 573. doi: 10.1007/S11090-010-9256-1
- Jiang B., Zheng J., Qiu S., Wu M., Zhang Q., Yan Z., Xue Q. // Chem. Eng. J. 2014. V. 236. P. 348. doi: 10.1016/j.cej.2013.09.090
- Foster J. E. // Phys. Plasmas. 2017. V. 24. P. 055501. https://doi.org/10.1063/1.4977921
- Chen Q., Li J., Li Y. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 424005. doi: 10.1088/0022-3727/48/42/424005
- Saito G., Akiyama T. // J. Nanomater. 2015. V.16. P. 299. doi: 10.1155/2015/123696
- Horikoshi S., Serponec N. // RSC Adv. 2017. V. 7 . P. 47196. doi: https://doi.org/10.1039/C7RA09600C
- Misra N.N. // Trends Food Sci. Technol. 2015. V. 45. P. 229. doi: 10.1016/j.tifs.2015.06.005
- Mu R., Liu Y., Li R., Xue G., Ognier S. // Chem. Eng. J. 2016. V. 296. doi: 10.1016/j.cej.2016.03.054
- Puač N., Gherardi M., Shiratani M. // Plasma Process. Polym. 2018. V. 15. P. 1700174
- Jablonowski H., von Woedtke T. // Clin. Plasma Med. 2015. V. 3 P. 42. doi: 10.1016/J.CPME.2015.11.003
- Friedman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. // Plasma Process. Polym. 2008. V. 5. P. 503. doi: 10.1002/ppap.200700154
- Liu Z.C., Liu D.X., Chen C., Li D., Yang A.J., Rong M.Z., Chen H.L., Kong M.G. // J. Phys. D: Appl. Phys. 2015.V. 48. P. 495201. doi: 10.1088/0022-3727/48/49/495201
- Liu Z.C., Liu D.X., Luo S.T., Wang W.T., Liu Z.J., Yang A. J., Rong Z., Chen H.L., Kong M.G. // J. Phys. D: Appl. Phys. 2019. V. 52. P. 415201. https://doi.org/10.1088/1361-6463/ab2f07
- Sakiyama Y., Graves D.B., Chang H.W., Shimizu T., Morfill G.E. // J. Phys. D: Appl. Phys. 2012. V. 45. P. 425201. doi: 10.1088/0022-3727/45/42/425201
- Liu Z.C., Lin D.X., Rong M.Z., Chen H.L., Kong M.G. // Plasma Process. Polym. 2017. V.14. P. 1600113. doi: 10.1002/ppap.201600113
- Du J., Liu Z., Bai C., Li L., Zhao Y., Wang L., Pan J. // Europ. Phys. J. D. 2018. V. 72. P. 179. https://doi.org/10.1140/epjd/e2018-90138-3
- Lietz A.M., Kushner M.J. // J. Phys. D: Appl. Phys. 2016. V. 49. P. 425204. doi: 10.1088/0022-3727/49/42/425204
- Chen C., Liu D.X., Liu Z.C., Yang A.J, Chen H.L., Shama G., Kong M.G. // Plasma Chem. Plasma Process. 2014. V. 34. P. 403. doi: 10.1007/s11090-014-954
- Norberg S.A., Guy M., Parsey G.M., Lietz A.M. , Johnsen E., Kushner M.J. // J. Phys. D: Appl. Phys. 2019. V. 52. P. 015201. doi: 10.1088/1361-6463/aae41e
- Verlackt C., Van Boxem W., Bogaerts A. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 6845. doi: 10.1039/c7cp07593f
- Heirman P., Van Boxem W., Bogaerts A. // Phys Chem. Chem. Phys. 2019. V. 21. P. 12881. doi: 10.1039/c9cp00647h
- Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J Phys D: Appl Phys. 2022. V. 55. P. 345206. https://doi.org/10.1088/1361-6463/ac74f8
- Shutov D.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. P. 577. https://doi.org/10.1007/s11090-023-10322-1
- Zheng Y. ,Wang L., Bruggeman P. // J. Vac. Sci. Technol. 2020. V. A38. P. 063005. doi: 10.1116/6.0000575
- Guschin A.A., Grinevich V.I., Kvitkova E.Yu., Gusev G.I., Shutov D.A., Ivanov A.N., Manukyan A.S., V.V. Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 65. P. 121. doi: 10.6060/ivkkt.20236607.6835j
- Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov.A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech. 2022. V. 65. P. 112. doi: 10.6060/ivkkt.20226512.6743
- Titov V.A., Rybkin V.V., Maximov A.I., Choi H-S. // Plasma Chem. Plasma Process. 2005. V. 25. P. 503. doi: 10.1007/s11090-005-4996-z
- Titov V.A., Rybkin V.V., Smirnov S.A., Kulentsan A.L., Choi H-S. // Plasma Chem. Plasma Process. 2006. V. 26. P. 543. doi: 10.1007/s11090-006-9014-6
- Bobkova E.S., Smirnov S.A., Zalipaeva Ya.V., Rybkin V.V. // Plasma Chem. Plasma Process. 2014. V. 34. P. 721. doi: 10.1007/s11090-014-9539-z
- Smirnov S.A., Shutov D.A., Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 639. doi: 10.1007/s11090-015-9626-9
- Shutov D.A., Smirnov S.A., Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 107. doi: 10.1007/s11090-014-9596-3
- Shutov D.A., Smirnov S.A., Rybkin V.V. // High Energy Chem. 2014. V.48. P. 502. doi: 10.1134/S0018143914060071
- Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 133. doi: 10.1007/s11090-014-9583-8
- Herrmann H., Ervens B., Jacobi H.W., Wolke R., Nowacki P., Zellner R. // J. Atmos. Chem. 2000. V. 36. P.231. doi: 10.1002/bbpc.19920960347
- Pastina B., LaVerne J.A. // J. Phys. Chem. A. 2001. V. 40. P. 9316. doi: 10.1021/jp012245j
- Van Gils C.A.J., Hofmann S., Boekema B.K.H.L., Brandenburg R., Bruggeman P.J. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 175203. doi: 10.1088/0022-3727/46/17/175203
- Buehler R.E., Staehelin J., Hoigne J. // J. Phys. Chem. 1984. V. 88. P. 2560. doi: 10.1021/j150656a026
- Tomiyasu H., Fukutomi H., Gordon G. // Inorg. Chem. 1985. V. 24. P. 2962. doi: 10.1021/ic00213a018
- Pandis S.N., Seinfeld J.H. // J. Geophys. Res. 1989. V. 94. P. 1105. doi: 10.1029/JD094iD01p01105
- Shibata T., Nishiyama H. // J. Phys. D: Appl. Phys. 2014. V. 47. P. 105203. doi: 10.1088/0022-3727/47/10/10520
- Loegager T., Sehested K. // J. Phys. Chem. 1993. V. 97. P. 10047. doi: 10.1088/0022-3727/47/10/10520
- Field R.J., Noyes R.M., Postlethwaite D. // J. Phys. Chem. 1976. V. 80. P. 223. doi: 10.1021/j100544a002
- Rabani J., Matheson M.S. The pulse radiolysis of aqueous solutions of potassium ferrocyanide // J. Phys. Chem. 1966. V. 70. P. 761. doi: 10.1021/j100875a025
- Sehested K., Holcman J., Bjergbakke E., Hart E.J. // J. Phys. Chem. 1982. V. 86. P.2066. doi: 10.1021/j100208a031
- Goldstein S., Squadrito G.L., Pryor W.A., Czapski G. // Free Radic. Biol. Med. 1996. V. 21. P. 965. doi: 10.1016/S0891-5849(96)00280-8
- Halpern J., Rabani J. // J. Am. Chem. Soc. 1966. V. 88. P. 699. doi: 10.1021/ja00956a015
- Gils C.A.J., Hofmann S., Boekema B.K.H.L., Brandenburg R., Bruggeman P.J. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 175203. doi: 10.1088/0022-3727/46/17/175203
- Coddington J.W., Hurst J.K., Lymar S.V. // J. Am. Chem. Soc. 1999. V. 121. P. 2438. doi: 10.1021/ja982887t
- Exner M., Herrmann H., Zellner R. // Ber. Bunsenges. Phys. Chem. 1992. V. 96. P. 470. doi: 10.1002/bbpc.19920960347
- Barzaghi P., Herrmann H. // Phys. Chem. Chem. Phys. 2002. V. 4. P. 3669. doi: 10.1039/B201652D
- Rudich Y., Talukdar R.K., Ravishankara A.R., Fox R.W. // J. Geophys. Res. 1996. V. 101. P. 21023. doi: 10.1029/96JD01844
- Shigeo D., Fumiyoshi T., Tsuneo W. // JPN J. Appl. Phys. 2000. V. 39. P. 4914. doi: 10.1143/JJAP.39.4914
- Zhang J., Chen J., Li X. // J. Water Resour. Prot. 2009. V. 1. P. 99. doi: 10.4236/jwarp.2009.12014
- Rumbach P., Bartels D.M., Sankaran R.M., Go D.B. // Nat. Comm. 2015. V. 6. P. 7248. doi: 10.1038/ncomms8248
- Bielski B.H.J., Cabelli D.E., Arudi R.L. // J. Phys. Chem. Ref. Data. 1985. V. 14. P. 1041. doi: 10.1063/1.555739
- Knipping E.M., Dabdub D. // J. Geophys. Res. Atmos. 2002. V. 107. P. 4360. doi: 10.1029/2001JD000867
- Barat F., Gilles L., Hickel B., Lesigne B. // J. Phys. Chem. 1971. V. 75. P. 2177. doi: 10.1021/j100683a019
- Anbar M., Taube H. // J. Am. Chem. Soc. 1954. V. 76. P. 6243. doi: 10.1021/ja01653a007
- Loegager T., Sehested K. // J. Phys. Chem. 1993. V. 97. P. 6664. doi: 10.1021/j100141a025
- Benderskii V.A., Krivenko A., Ponomarev E., Fedorovich N. // Elektrokhimiya. 1987. V. 23. P. 1435.
- Elliot A.J., McCracken D.R., Buxton G.V., Wood N.D. // J. Chem. Soc. Farad. Trans. 1990. V. 86. P.1539. doi: 10.1039/FT9908601539
- Goldstein S., Lind J., Merenyi G. // Chem. Rev. 2005. V. 105. P. 2457. doi: 10.1021/cr0307087
- Merenyi G., Lind J., Czapski G., Goldstein S. // Inorg. Chem. 2003. V. 42.P. 3796. doi: 10.1021/ic025698r
- Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 513. doi: 10.1063/1.555805
- Gear C.W. // Math. Comput. 1973. V. 27. P. 673. doi: 10.2307/2005674
- Соколов А.Н. // Научно-технический вестник информационных технологий, механики и оптики. 2012. № 2. С. 88.
- Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 133. doi: 10.1007/s11090-014-9583-8
- Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. N 1. P. 21. doi: 10.1007/s11090-009-9202-2
- Радциг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике. М.: Атомиздат, 1980. 240 с.
Supplementary files
