Non-covalent structures of negative ions in dissociative electron capture spectra
- 作者: Asfandiarov N.L.1, Muftakhov M.V.1, Rakhmeyev R.G.1, Pshenichnyuk S.A.1
-
隶属关系:
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- 期: 卷 89, 编号 3 (2025)
- 页面: 350–355
- 栏目: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://consilium.orscience.ru/0367-6765/article/view/686010
- DOI: https://doi.org/10.31857/S0367676525030026
- EDN: https://elibrary.ru/FRHGCW
- ID: 686010
如何引用文章
详细
Over the last ten years, a few examples of so-called non-covalent structures of negative ions have been found, the geometry of which differs significantly from the geometry of the original molecules. In particular, the lengths of carbon-halogen bonds reach 2.7–3 Å, and the halogen atom itself can circle the hydrocarbon skeleton of the anion, the so-called roaming effect. Such non-covalent structures can have a significantly higher electron affinity than the original molecules.
作者简介
N. Asfandiarov
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
Email: nail@anrb.ru
Ufa, 450075 Russia
M. Muftakhov
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
R. Rakhmeyev
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
S. Pshenichnyuk
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
参考
- Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М. Наука, 1981. 159 с.
- Fabrikant I.I., Eden S., Mason N.J., Fedor J. // Adv. Atom. Mol. Opt. Phys. 2017. V. 66. P. 545.
- Пшеничнюк С.А., Асфандиаров Н.Л., Воробьев А.С., Матейчик Ш. // УФН. 2022. Т. 192. С. 177; Pshenichnyuk S.A., Asfandiarov N.L., Vorob’ev S.A., Matejcik S. // Phys. Usp. 2023. V. 65. P. 163.
- Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Rapid Commun. Mass Spectrom. 2014. V. 28. P. 1580.
- Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Rapid Commun. Mass Spectrom. 2015. V. 29. P. 910.
- Макаров А.А., Малиновский А.Л., Рябов Е.А. // УФН. 2022. Т. 182. С. 2047; Makarov A.A., Malinovsky A.L., Ryabov E.A. // Phys. Usp. 2012. V. 55. P. 977.
- Asfandiarov N.L., Muftakhov M.V., Pshenichnyuk S.A. // J. Electron Spectr. Rel. Phen. 2023. V. 267. Art. No. 147383.
- Longevialle P. // Mass Spectrom. Rev. 1992. V. 11. P. 157.
- Suits A.G. // Annu. Rev. Phys. Chem. 2020. V. 71. P. 4.1.
- Maeda S., Taketsugu T., Ohno K., Morokuma K. // JACS. 2015. V. 137. P. 3433.
- Christophorou L.G., Compton R.N., Hurst G.S. Reinhardt P.W. // J. Chem. Phys. 1966. V. 45. P. 536.
- Burrow P.D., Modelli A., Jordan K.D. // Chem. Phys. Lett. 1986. V. 132. P. 441.
- Modelli A., Venutti M. // J. Phys. Chem. A. 2001. V. 105. P. 5836.
- Beregovaya I.V., Shchegoleva L.N. // Chem. Phys. Lett. 2001. V. 348. P. 501.
- Shchegoleva L.N., Beregovaya I.V. // Int. J. Quant. Chem. 2016. V. 116. P. 161.
- Schurmann R., Tanzer K., Dabkowska I. et al. // J. Phys. Chem. B. 2017. V. 121. P. 5730.
- Асфандиаров Н.Л., Рахмеев Р.Г., Сафронов А.М., Пшеничнюк С.А. // ЖФХ. 2023. Т. 97. № 9. С. 1254; Asfandiarov N.L., Rakhmeev R.G., Safronov A.M., Pshenichnyuk S.A. // Rus. J. Phys. Chem. A. 2023. V. 87. P. 1907.
- Asfandiarov N.L., Muftakhov M.V., Rakhmeev R.G. et al. // J. Electron Spectr. Rel. Phen. 2022. V. 356. Art. No. 146178.
- Asfandiarov N.L., Muftakhov M.V., Pshenichnyuk S.A. et al. // J. Chem. Phys. 2021. V. 155. Art. No. 244302.
- Pshenichnyuk S.A., Modelli A. // PCCP. 2013. V. 15. P. 9125.
- Asfandiarov N.L., Muftakhov M.V., Rakhmeev R.G. et al. // J. Electron. Spectr. Rel. Phen. 2022. V. 256. Art. No. 147178.
- Asfandiarov N.L., Muftakhov M.V., Pshenichnyuk S.A. // J. Chem. Phys. 2023. V. 158. Art. No. 194305.
- Balog R., Langer J., Gohlke S. et al. // Int. J. Mass Spectrom. 2004. V. 233. P. 267.
- Lee S.W. // Appl. Surf. Sci. Adv. 2023. V. 16. Art. No. 100428.
- Koch S., Kaiser C.D., Penner P. et al. // Beilsten J. Nanotechnol. 2017. V. 8. P. 2562.
- Галиев А.Ф., Лачинов А.Н., Корнилов В.М., Гадиев Р.М. // Изв. РАН. Сер. физ. 2020. Т. 84. С. 623; Galiev A.F., Lachinov A.N., Kornilov V.M., Gadiev R.M. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 512.
补充文件
