Electrical resistance of some types of homooligonucleotides
- Autores: Sharipov T.I.1, Mishra A.K.2, Garafutdinov R.R.3
-
Afiliações:
- Ufa University of Science and Technology
- University of the Western Cape
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 414–418
- Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://consilium.orscience.ru/0367-6765/article/view/686021
- DOI: https://doi.org/10.31857/S0367676525030133
- EDN: https://elibrary.ru/FSBNJZ
- ID: 686021
Citar
Resumo
We presented the results of a study of the electrical resistance of two types of short single-stranded DNA molecules consisting of only one type of nucleotides — dA or dC, using scanning tunneling microscopy and spectroscopy. It was found that the resistance of dC12 homooligonucleotides is slightly higher than that of dA12 homooligonucleotides.
Palavras-chave
Sobre autores
T. Sharipov
Ufa University of Science and Technology
Email: sha-t@ya.ru
Ufa, 450076 Russia
A. Mishra
University of the Western CapeBelleville, 7535 South Africa
R. Garafutdinov
Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450054 Russia
Bibliografia
- Лахно В.Д., Винников А.В. Молекулярные устройства на основе ДНК. Нанобиоэлектроника. Препринты ИПМ им. М.В.Келдыша. 2018. № 137. 26 с.
- Гарафутдинов Р.Р., Купова О.Ю., Сахабутдинова А.Р. // Биохимия. 2024. Т. 89. № 1. С. 53.
- Lucia-Tamudo J., Cardenas G., Anguita-Ortiz N. et al. // J. Chem. Inf. Model. 2022. V. 62. P. 3365.
- Wang M.D., Yin H., Landick R. et al. // Biophys. J. 1997. V. 72. No. 3. P. 1335.
- Bustamante C., Keller D.J. // Biol. Phys. Today. 1995. V. 48. P. 32.
- Lund J., Parviz B.A. // Meth. Mol. Biol. 2009. V. 578. P. 113.
- Ryndyk D., Shapir E., Porath D. et al. // ACS Nano. 2009. V. 3. No. 7. P. 1651.
- Stern A., Eidelshtein G., Zhuravel R. et al. // Adv. Mater. 2018. V. 30. No. 26. Art. No. 1800433.
- Puchkova A.O., Sokolov P., Kasyanenko N.A. // J. Nanopart Res. 2011. V. 13. No. 9. P. 3633.
- Popova M.A., Rolich V.I., Ramazanov R.R. et al. // J. Phys. Conf. Ser. 2020. V. 1679. Art. No. 022049.
- Sharipov T.I., Sakhautdinov I.M., Talipov R.F., Garafutdinov R.R. // J. Nanopart. Res. 2023. V. 25. No. 4. Art. No. 64.
- Linares F., Garcia-Fernandez E., Lopez-Garzon F. et al. // Chem. Sci. 2019. V. 10. P. 1126.
- Schimka S., Santer S., Mujkic-Ninnemann N. et al. // Biomacromol. 2016. V. 17. No. 6. P. 1959.
- Sinurat E.N., Yudiarsah E. // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 763. Art. No. 012061.
- Алибай Т.Т., Шарипов Т.И. // В кн.: Фундаментальная математика и ее приложения в естествознании. Тезисы докл. ХIV междунар. школыконф. студ., асп. и мол. ученых. Уфа: РИЦ УУНиТ, 2023. С. 69.
- Карамов Д.Д., Лачинов А.Н., Корнилов В.М. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 636; Karamov D.D., Lachinov A.N., Kornilov V.M. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 524.
Arquivos suplementares
