Catalytic properties of a nanozyme based on silver nanoparticles immobilized in a polymethacrylate matrix

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

This article presents studies on the catalytic, peroxidase-like properties of silver nanoparticles (Ag NPs) immobilized in polymethacrylate matrix (PMM). Ag NPs were prepared by thermal reduction of silver cations pre-immobilized in PMM. The morphology of the nanocomposite was studied using scanning electron microscopy, and the average size of the synthesized individual spherical nanoparticles was 18 ± 5 nm. It was demonstrated that silver nanoparticles immobilized in a polymethacrylate matrix (PMM-Ag0) exhibit pronounced peroxidase-like activity in the oxidation reaction of the chromogenic substrate – indigocarmine in the presence of H₂O₂. The Michaelis–Menten model was used to assess the kinetic parameters of the reaction. The values of Michaelis constant (Km) observed for indigocarmine and H₂O₂ (0.1 mM and 1.0 mM, respectively) show strong affinity of the substrates to silver nanoparticles in PMM.

Texto integral

Acesso é fechado

Sobre autores

S. Bragina

National Research Tomsk State University

Autor responsável pela correspondência
Email: braginask@gmail.com
Rússia, Lenin Ave., 36, Tomsk, 634050

N. Gavrilenko

National Research Tomsk State University

Email: braginask@gmail.com
Rússia, Lenin Ave., 36, Tomsk, 634050

N. Saranchina

National Research Tomsk State University

Email: braginask@gmail.com
Rússia, Lenin Ave., 36, Tomsk, 634050

M. Gavrilenko

National Research Tomsk Polytechnic University

Email: braginask@gmail.com
Rússia, Lenin Ave., 30, Tomsk, 634050

Bibliografia

  1. Zhang R., Yan X., Fan K. // Acc. Mater. Res. 2021. V. 2. P. 534.
  2. Tang G., He J., Liu J., Yan X., Fan K. // Exploration. 2021. V. 1. № 1. Р. 75.
  3. Li X., Zhu H., Liu P., Wang M., Pan J., Qiu F., Ni L., Niu X. // TrAC Trend. Anal. Chem. 2021. V. 143. 116379.
  4. Alula M.T., Feke K. // J. Clust. Sci. 2023. V. 34. № 1. Р. 614.
  5. Yan W.U., Zhou J.M., Jiang Y.S., Wen L.I., Meng-Jie H.E., Xiao Y., Chen J.Y. // Chin. J. Anal. Chem. 2022. V. 50. № 12. 100187.
  6. Cui Y., Lai X., Liang B., Liang Y., Sun H., Wang L. // ACS Omega. 2020. V. 5. № 12. Р. 6804.
  7. Wang H., Wan K., Shi X. // Adv. Mater. 2019. V. 31. № 45. 1805368.
  8. Jiang C., Wei X., Bao S., Tu H., Wang W. // RSC Adv. 2019. V. 9. № 71. 41568.
  9. Li D., Tian R., Kang S., Chu X.Q., Ge D., Chen X. // Food Chem. 2022. V. 393. 133386.
  10. Karim M.N., Anderson S.R., Singh S., Ramanathan R., Bansal V. // Biosens. Bioelectron. 2018. V. 110. P. 8.
  11. Saranchina N.V., Bazhenova O.A., Bragina S.K., Semin V.O., Gavrilenko N.A., Volgina T.N., Gavrilenko M.A. // Talanta. 2024. V. 275. 126159.
  12. Bragina S.K., Bazhenova O.A., Gavrilenko M.M., Chubik M.V., Saranchina N.V., Volgina T.N., Gavrilenko N.A. // Mendeleev Commun. 2023. V. 33. № 2. P. 263.
  13. Gavrilenko N.A., Saranchina N.V. // J. Anal. Chem. 2010. V. 65. № 2. Р. 153.
  14. Tolstov A.L., Lebedev E.V. // Theor. Exp. Chem. 2012. V. 48. № 4. P. 211.
  15. Lian J., Yin D., Zhao S., Zhu X., Liu Q., Zhang X., Zhang X. // Colloid Surface A. 2020. V. 603. 125283.
  16. Lian Q., Chen L., Peng G., Zheng X., Liu Z., Wu S. // Chem. Phys. 2023. V. 570. 111895.
  17. Darabdhara G., Sharma B., Das M.R., Boukherroub R., Szunerits S. // Sensor. Actuat. B: Chem. 2017. V. 238. P. 851.
  18. Jiang C., Bai Z., Yuan F., Ruan Z., Wang W. // Spectrochim. Acta A. 2022. Vol. 265. 120348.
  19. Wei F., Cui X., Wang Z., Dong C., Li J., Han X. // Chem. Eng. J. 2021. V. 408. 127240.
  20. Alula M.T., Hendricks-Leukes N.R. // Spectrochim. Acta A. 2024. V. 322. 124830.
  21. Mazhani M., Alula M.T., Murape D. // Anal. Chim. Acta. 2020. V. 1107. P. 193.
  22. Khagar P., Bagde A.D., Sarode B., Maldhure A.V., Wankhade A.V. // Inorg. Chem. Commun. 2022. V. 141. 109622.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Absorption spectra of PMM-Ag0 at different Ag contents in PMM depending on the contact time with AgNO3 solution: 1 – 4 min (aAg = 0.56 wt.%); 2 – 3 min (aAg = 0.29 wt.%); 3 – 2 min (aAg = 0.17 wt.%).

Baixar (526KB)
3. Fig. 2. Absorption spectra of PMM-Ag0 at different storage times.

Baixar (676KB)
4. Fig. 3. SEM images of Ag nanoparticles in PMM obtained by thermal reduction, at scales of 2 μm (a) and 400 nm (b).

Baixar (1MB)
5. Fig. 4. Size distribution of Ag nanoparticles in PMM.

Baixar (1MB)
6. Fig. 5. Photograph and absorption spectra of solutions: 1 – indigo carmine, 2 – indigo carmine + H2O2, 3 – indigo carmine + PMM-Ag0, 4 – indigo carmine + H2O2 + PMM-Ag0. Cindigo carmine = 2.2 × 10–4 M, CH2O2 = 2.7 × 10–3 M, pH 4.0, reaction time – 50 min.

Baixar (603KB)
7. Fig. 6. Dependence of indigo carmine conversion (ΔA/A0) on reaction conditions: a – Ag nanoparticle content in PMM, b – pH value, c – temperature. Reaction conditions: Cindigo carmine = 2.2 × 10–4 M, CH2O2 = 2.7 × 10–3 M.

Baixar (1MB)
8. Fig. 7. Kinetic curves of indigo carmine concentration oxidized by H2O2 in the presence of PMM-Ag0 as a function of time: a – at an initial indigo carmine concentration of 9.5 × 10–4 M and initial H2O2 concentrations of 1.6 × 10–4 (1), 5.3 × 10–4 (2), 1.6 × 10–3 (3), 2.7 × 10–3 (4), and 3.7 × 10–3 M (5); b – at an initial H2O2 concentration of 2.6 × 10–3 M and initial indigo carmine concentrations of 2.0 × 10–5 (1), 3.9 × 10–5 (2), 1.1 × 10–4 (3), 1.9 × 10–4 (4), and 2.6 × 10–4 M (5).

Baixar (863KB)
9. Fig. 8. Curves of initial rate (V0) of indigo carmine oxidation in the presence of PMM-Ag0 versus initial concentrations of H2O2 (a) and indigo carmine (b) in the studied solutions. Graphs of V0 of indigo carmine oxidation in the presence of PMM-Ag0 versus initial concentrations of H2O2 (c) and indigo carmine (d) in Lineweaver–Burk coordinates.

Baixar (1MB)
10. Oxidation of indigo carmine

Baixar (538KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025