Synthesis and antibacterial activity of silver nanoparticles stabilized by lipopeptides and glycolipids produced by Bacillus amyloliquefaciens and Pseudomonas fluorescens
- 作者: Khina A.G.1,2, Gordeev A.S.3, Biktasheva L.R.3, Gorbunov D.M.1, Kuryntseva P.A.3, Lisichkin G.V.1, Krutyakov Y.A.1,4
-
隶属关系:
- Lomonosov Moscow State University
- Bauman Moscow State Technical University
- Kazan Federal University
- National Research Center “Kurchatov Institute”
- 期: 卷 61, 编号 3 (2025)
- 页面: 269-282
- 栏目: Articles
- URL: https://consilium.orscience.ru/0555-1099/article/view/689330
- DOI: https://doi.org/10.31857/S0555109925030058
- EDN: https://elibrary.ru/FNUWYD
- ID: 689330
如何引用文章
详细
The colloidal chemical and antibacterial properties of aqueous dispersions of silver nanoparticles stabilized by surfactin and rhamnolipids isolated from B. amyloliquefaciens and P. fluorescens were studied. The isolated biosurfactants were identified by thin layer chromatography and Fourier transform infrared spectrometry. Using the methods of UV-visible spectrophotometry, transmission electron microscopy and dynamic light scattering, the colloidal chemical characteristics of the resulting dispersions were studied. Optimal ratios of the precursor substances were found in which the used biosurfactants perform as effective stabilizers of dispersions of silver nanoparticles and ensure their aggregative stability for at least two months. It was shown that the studied dispersions have antibacterial activity against gram-positive B. subtilis and gram-negative P. aeruginosa and E. coli. A comparative assessment of the antibacterial activity of silver nanoparticles stabilized by biosurfactants and traditional silver-containing preparations, such as a silver nitrate solution and a dispersion of silver nanoparticles stabilized by citrate, was carried out. Furthermore, dispersions stabilized with surfactin showed the highest antibacterial activity, comparable to the effect of a silver nitrate solution, which is associated with their good colloidal stability. In addition, high antibacterial activity of dispersions of silver nanoparticles stabilized with biosurfactants isolated from Bacillus and Pseudomonas bacteria against strains of the other genus was discovered. An explanation of the observed phenomenon is given and the prospects for its application in medicine are proposed.
全文:

作者简介
A. Khina
Lomonosov Moscow State University; Bauman Moscow State Technical University
编辑信件的主要联系方式.
Email: alex_khina@inbox.ru
Lomonosov Moscow State University, Department of Chemistry
俄罗斯联邦, Moscow, 119991; Mosccow, 105005A. Gordeev
Kazan Federal University
Email: alex_khina@inbox.ru
Institute of Ecology, Biotechnology and Nature Management
俄罗斯联邦, Kazan, 420008L. Biktasheva
Kazan Federal University
Email: alex_khina@inbox.ru
Institute of Ecology, Biotechnology and Nature Management
俄罗斯联邦, Kazan, 420008D. Gorbunov
Lomonosov Moscow State University
Email: alex_khina@inbox.ru
Department of Chemistry
俄罗斯联邦, Moscow, 119991P. Kuryntseva
Kazan Federal University
Email: alex_khina@inbox.ru
Institute of Ecology, Biotechnology and Nature Management
俄罗斯联邦, Kazan, 420008G. Lisichkin
Lomonosov Moscow State University
Email: alex_khina@inbox.ru
Department of Chemistry
俄罗斯联邦, Moscow, 119991Yu. Krutyakov
Lomonosov Moscow State University; National Research Center “Kurchatov Institute”
Email: nrcki@nrcki.ru
Lomonosov Moscow State University, Department of Chemistry
俄罗斯联邦, Moscow, 119991; Moscow, 123182参考
- Varela M.F., Stephen J., Lekshmi M., Ojha M., Wenzez N., Sanford L.M., Hernandez A.J. et al. // Antibiotics. 2021. V. 10. https://doi.org/10.3390/antibiotics10050593
- Butler M.S., Gigante V., Sati H., Paulin S., Al-Sulaiman L., Rex J.H. et al. // Antimicrob. Agents Chemother. 2022. V. 66. https://doi.org/10.1128/aac.01991-21
- Stachelek M., Zalewska M., Kawecka-Grochocka E., Sakowski T., Bagnicka E. // Annals of Animal Science. 2021. V. 21. P. 63–87. https://doi.org/10.2478/aoas-2020-0098
- Vila J., Moreno-Morales J., Ballesté-Delpierre C. // Clin. Microb. Infect. 2020. V. 26. P. 596–603. https://doi.org/10.1016/j.cmi.2019.09.015
- Hamad A., Khashan K.S., Hadi A. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 4811–4828. https://doi.org/10.1007/s10904-020-01744-x
- Waszczykowska A., Żyro D., Ochocki J., Jurowski P. // Biomedicines. 2021. V. 9. P. 210. https://doi.org/10.3390/biomedicines9020210
- Sekito T., Sadahira T., Watanabe T., Maruyama Y., Watanabe T., Iwata T. et al. // World Acad. Sci J. 2022. V. 4. P. 1–6. https://doi.org/10.3892/wasj.2022.141
- Ozdal M., Gurkok S. // ADMET DMPK. 2022. V. 10. P. 115–129. https://doi.org/10.5599/admet.1172
- Krutyakov Y., Klimov A., Violin B., Kuzmin V., Ryzhikh V., Gusev A. et al. // Eur. J. Nanomed. 2016. V. 8. P. 185–194. https://doi.org/10.1515/ejnm-2016-0018
- Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. // Int. J. Nanomedicine. 2020. V. 15. P. 2555–2562. https://doi.org/10.2147/IJN.S246764
- Dos Santos C.A., Seckler M.M., Ingle A.P., Gupta I., Galdiero S., Galdiero M. et al. // J. Pharm. Sci. 2014. V. 103. P. 1931–1944. https://doi.org/10.1002/jps.24001
- Cambier S., Røgeberg M., Georgantzopoulou A., Serchi T., Karlsson C., Verhaegen S. et al. // Sci. Total Environ. 2018. V. 610. P. 972–982. https://doi.org/10.1016/j.scitotenv.2017.08.115
- Abramenko N., Semenova M., Khina A., Zherebin P., Krutyakov Y., Krysanov E., Kustov L. // Nanomaterials. 2022. V. 12. https://doi.org/10.3390/nano12224003
- Khina A.G., Krutyakov Y.A. // Appl. Biochem. Microbiol. 2021. V. 57. P. 683–693. https://doi.org/10.1134/S0003683821060053
- Salleh A., Naomi R., Utami N.D., Mohammad A.W., Mahmoudi E., Mustafa N., Fauzi M.B. // Nanomaterials. 2020. V. 10. https://doi.org/10.3390/nano10081566
- Liau S.Y., Read D.C., Pugh W.J., Furr J.R., Russell A.D. // Lett. Appl. Microbiol. 1997. V. 25. P. 279–283. https://doi.org/10.1046/j.1472-765X.1997.00219.x
- Gordon O., Vig Slenters T., Brunetto P.S., Villaruz A.E., Sturdevant D.E., Otto M. et al. // Antimicrob. Agents Chemother. 2010. V. 54. P. 4208–4218. https://doi.org/10.1128/aac.01830-09
- Dibrov P., Dzioba J., Gosink K.K., Häse C.C. // Antimicrob. Agents Chemother. 2002. V. 46. P. 2668–2670. https://doi.org/10.1128/aac.46.8.2668-2670.2002
- Yamanaka M., Hara K., Kudo J. // Appl. Environ. Microbiol. 2005. V. 71. P. 7589–7593. https://doi.org/10.1128/AEM.71.11.7589-7593.2005
- Freeland J., Khadka P., Wang Y. // Phys. Rev. E. 2018. V. 98. https://doi.org/10.1103/PhysRevE.98.062403
- Adeyemi O.S., Shittu E.O., Akpor O.B., Rotimi D., Batiha G.E. // EXCLI J. 2020. V. 19. P. 492. http://dx.doi.org/10.17179/excli2020-1244
- Cabiscol Catalā E., Tamarit Sumalla J., Ros Salvador J. // Int. Microbiol. 2000. V. 3. № 1. P. 3–8. https://doi.org/10.2436/IM.V3I1.9235
- McQuillan J.S., Shaw A.M. // Nanotoxicology. 2014. V. 8. P. 177–184. https://doi.org/10.3109/17435390.2013.870243
- Krutyakov Y.A., Khina A.G. // Appl. Biochem. Microbiol. 2022. V. 58. P. 493–506. https://doi.org/10.1134/S0003683822050106
- Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y., Lisichkin G.V. // Russian Chemical Reviews. 2008. V. 77. P. 233. https://doi.org/10.1070/RC2008v077n03ABEH003751
- Kvítek L., Panáček A., Soukupová J., Kolář M., Večeřová R., Prucek R. et al. // J. Phys. Chem. C. 2008. V. 112. P. 5825–5834. https://doi.org/10.1021/jp711616v
- Gibała A., Żeliszewska P., Gosiewski T., Krawczyk A., Duraczyńska D., Szaleniec J. et al. // Biomolecules. 2021. V. 11. P. 1481. https://doi.org/10.3390/biom11101481
- Vertelov G.K., Krutyakov Y.A., Efremenkova O. V, Olenin A.Y., Lisichkin G.V // Nanotechnology. 2008. V. 19. https://doi.org/10.1088/0957-4484/19/35/355707
- Markande A.R., Patel D., Varjani S.A. // Bioresour. Technol. 2021. V. 330. https://doi.org/10.1016/j.biortech.2021.124963
- Puyol McKenna P., Naughton P.J., Dooley J.S.G., Ternan N.G., Lemoine P., Banat I.M. // Pharmaceuticals. 2024. V. 17. P. 138. https://doi.org/10.3390/ph17010138
- Chrzanowski Ł., Ławniczak Ł., Czaczyk K. // World J. Microbiol. Biotechnol. 2012. V. 28. P. 401–419. https://doi.org/10.1007/s11274-011-0854-8
- Andrić S., Meyer T., Rigolet A., Prigent-Combaret C., Höfte M., Balleux G. et al. // Microbiol. Spectr. 2021. V. 9. https://doi.org/10.1128/spectrum.02038-21
- Kumar C.G., Mamidyala S.K., Das B., Sridhar B., Devi G.S., Karuna M.S. // J. Microbiol. Biotechnol. 2010. V. 20. P. 1061–1068. http://doi.org/10.4014/jmb.1001.01018
- Salazar-Bryam A.M., Yoshimura I., Santos L.P., Moura C.C., Santos C.C., Silva V.L., et al. // Colloids Surf. B. Biointerfaces. 2021. V. 205. https://doi.org/10.1016/j.colsurfb.2021.111883
- Reddy A.S., Chen C. Y., Baker S.C., Chen C. C., Jean J. S., Fan C. W. et al. // Mater. Lett. 2009. V. 63. P. 1227–1230. https://doi.org/10.1016/j.matlet.2009.02.028
- Rangarajan V., Dhanarajan G., Dey P., Chattopadhya D., Sen R. // Appl. Nanosci. 2018. V. 8. P. 1809–1821. https://doi.org/10.1007/s13204-018-0852-3
- Bezza F.A., Tichapondwa S.M., Chirwa E.M.N. // J. Hazard Mater. 2020. V. 393. https://doi.org/10.1016/j.jhazmat.2020.122319
- Joanna C., Marcin L., Ewa K., Grażyna P. A // Ecotoxicology. 2018. V. 27. P. 352–359. https://doi.org/10.1007/s10646-018-1899-3
- Elnosary M., Aboelmagd H., Sofy M.R., Sofy A. // Egypt J. Chem. 2023. V. 66. P. 209–223. http://doi.org/10.21608/ejchem.2022.159976.6894
- Vasileva-Tonkova E., Sotirova A., Galabova D. // Curr. Microbiol. 2011. V. 62. P. 427–433. http://doi.org/10.1007/s00284-010-9725-z
- EL-Amine Bendaha M., Mebrek S., Naimi M., Tifrit A., Belaouni H.A. // Open Access Sci. Rep. 2012. V. 2. http://doi.org/10.4172/scientificreports.544
- Schalchli H., Lamilla C., Rubilar O., Briceño G., Gallardo F., Durán N. et al. // J. Environ. Chem. Eng. 2023. V. 11. https://doi.org/10.1016/j.jece.2023.111572
- Zhang F., Huo K., Song X., Quan Y., Wang S., Zhang Z. et al. // Microb. Cell Fact. 2020. V. 19. P. 1–13. https://doi.org/10.1186/s12934-020-01485-z
- Sarker S.D., Nahar L., Kumarasamy Y. // Methods. 2007. V. 42. № 4. P. 321-324. https://doi.org/10.1016/j.ymeth.2007.01.006
- Volk H., Hendry P. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. / Ed. S. Y. Lee. Cham, Switzerland: Springer International Publishing AG, 2017. P. 1–16. https://doi.org/10.1007/978-3-319-31421-1_202-1
- Gordadze G.N., Tikhomirov V.I. // Pet. Chem. 2007. V. 47. № 6. P. 389–398.
- Seo J., Hoffmann W., Warnke S., Huang X., Gewinner S., Schöllkopf W. et al. // Nat. Chem. 2017. V. 9. P. 39–44. https://doi.org/10.1038/nchem.2615
- Janek T., Gudiña E.J., Połomska X., Biniarz P., Jama D., Rodrigues L.R. et al.// Molecules. 2021. V. 26. https://doi.org/10.3390/molecules26123488
- Deepika K.V., Raghuram M., Bramhachari P.V. // Afr. J. Microbiol. Res. 2017. V. 11. P. 218–231. http://doi.org/10.5897/AJMR2015.7881
- Nayarisseri A., Singh P., Singh S.K. // Bioinformation. 2018. V. 14. № 6. P. 304–314. http://doi.org/10.6026/97320630014304
- Shah M.U.H., Sivapragasam M., Moniruzzamana M., Yusup S.B. // Procedia Engineering. 2016. V. 148. P. 494–500. http://doi.org/10.1016/j.proeng.2016.06.538
- Dengle-Pulate V., Chandorkar P., Bhagwat S., Prabhune A.A. // J. Surfactants Deterg. 2014. V. 17. P. 543–552. https://doi.org/10.1007/s11743-013-1495-8
- Oluwaseun A.C., Kola O.J., Mishra P., Singh J.R., Singh A.K., Cameotra S.S., Micheal B.O. // Sustain. Chem. Pharm. 2017. V. 6. P. 26–36. https://doi.org/10.1016/j.scp.2017.07.001
- Huynh K.A., Chen K.L. // Environ. Sci. Technol. 2011. V. 45. P. 5564–5571. https://doi.org/10.1021/es200157h
- Lyng M., Kovács Á.T. // Trends Microbiol. 2023. V. 31. P. 845–857. https://doi.org/10.1016/j.tim.2023.02.003
补充文件
