The Influence of High Temperature on the Properties of Modified Cement Stone


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of highly dispersed tungsten-containing powders (WC, WO3, a mixture of WC, TiC) obtained as a result of recycling of carbide products on change in the structural and physico-mechanical properties of cement materials at elevated temperatures has been studied. Powders of tungsten carbide WC, tungsten oxide WO3, mixtures of tungsten and titanium carbides WC, TiC (average particle size 20–150 nm, agglomerates 300 nm – 1.5 microns) were added to the cement mortar, by partial replacement of the binder, in various concentrations (1–5 wt. %). The effect of additives on the thermal stability of cement samples was assessed by weight loss, residual compressive strength, exposed to temperatures at 300, 600 and 800оC for 2 hours. The microstructural analysis was performed using scanning electron microscopy (SEM) with an integrated energy dispersion analysis system. It was established that in the entire temperature range under consideration (20–800оC), the modified samples demonstrate a denser microstructure, have less mass loss and have increased residual compressive strength compared with the control composition. The obtained research results are of considerable value for understanding the mechanisms of influence of highly dispersed tungsten-containing particles on the characteristics of cement materials under high-temperature exposure.

Full Text

Restricted Access

About the authors

T. V. Chayka

Sevastopol State University

Author for correspondence.
Email: TVChayika@sevsu.ru

Senior Lecturer

Russian Federation, Sevastopol

V. M. Gavrish

Sevastopol State University

Email: vmgavrish@mail.sevsu.ru

Candidate of Sciences (Engineering), Associate Professor

Russian Federation, Sevastopol

A. Yu. Oleynik

Sevastopol State University

Email: ayoleinik@mail.sevsu.ru

Postgraduate Student, Assistant

Russian Federation, Sevastopol

References

  1. Sikora P., Abd Elrahman M., Stephan D. The influence of nanomaterials on the thermal resistance of cement-based composites – a review. Nanomaterials. 2018. Vol. 8. 465. https://doi.org/10.3390/nano8070465
  2. Abbas S., Nehdi M.L., Saleem M.A. Ultra-high-performance concrete: mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials. 2016. Vol. 10, pp. 271–295. https://doi.org/10.1007/s40069-016-0157-4
  3. Hager I. Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of sciences technical sciences. 2013. Vol. 61. No. 1. DOI: https://doi.org/10.2478/bpasts-2013-0013
  4. Yang Xu, Run-Sheng Lin, Yi Han, Xiao-Yong Wang. Behavior of biochar-modified cementitious composites exposed to high temperatures. Materials. 2021.Vol. 14. 5414. https://doi.org/10.3390/ma14185414
  5. Cao M., Yuan X., Ming X. et al. Effect of high temperature on compressive strength and microstructure of cement paste modified by micro- and nano-calcium carbonate particles. Fire Technology. 2022. Vol. 58, pp. 1469–1491. https://doi.org/10.1007/s10694-021-01211-0
  6. Hafiz Waheed Iqbal, Rao Arsalan Khushnood, Waqas Latif Baloch, Adnan Nawaz, Rana Faisal Tufail. Influence of graphite nano/microplatelets on the residual performance of high strength concrete exposed to elevated temperature. Construction and Building Materials. 2020. 253. 119029. https://doi.org/10.1016/j.conbuildmat.2020.119029
  7. Yuzhuo Wang, Zejian Liu, Shuang Qu, Junlin Gong, Xiao Lyu. Fire resistance of reinforced concrete beams: State of the art, analysis and prediction. Construction and Building Materials. 2023. Vol. 409. 134029. https://doi.org/10.1016/j.conbuildmat.2023.134029
  8. Mashshay A.F., Hashemi S.K., Tavakoli H. Post-fire mechanical degradation of lightweight concretes and maintenance strategies with steel fibers and nano-silica. Sustainability. 2023. Vol. 15. No. 9. 7463. https://doi.org/10.3390/su15097463
  9. Voutetaki M.E., Naoum M.C., Papadopoulos N.A., Chalioris C.E. Cracking diagnosis in fiber-reinforced concrete with synthetic fibers using piezoelectric transducers. Fibers. 2022. Vol. 10. No. 1. https://doi.org/10.3390/fib10010005
  10. Tobbala D.E., Rashed A.S., Tayeh B.A. et al. Performance and microstructure analysis of high-strength concrete in corporate with nanoparticles subjected to high temperatures and actual fires. Archives of Civil and Mechanical Engineering. 2022. Vol. 22. 85. https://doi.org/10.1007/s43452-022-00397-6
  11. Seleem S.E. Ahmad, Hossam S. Khalil, Ibrahim A. Sharaky, Ahmad M. El-Azab. Performance of residual properties for high strength concrete incorporating nanosilica against temperatures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 11, pp. 8–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-765-11-8-14
  12. Irshidat M R, Al-Nuaimi N, Rabie M. Influence of carbon nanotubes on phase composition, thermal and post-heating behavior of cementitious composites. Molecules. 2021. Vol. 26 (4). 850. https://doi.org/10.3390/molecules26040850
  13. Dong Lu, Xianming Shi, Jing Zhong. Interfacial bonding between graphene oxide coated carbon nanotube fiber and cement paste matrix. Cement and Concrete Composites. 2022. Vol. 134. 104802. https://doi.org/10.1016/j.cemconcomp.2022.104802
  14. Mohammed A., Al-Saadi N.T.K., Sanjayan. J. Inclusion of graphene oxide in cementitious composites: state-of-the-art review. Australian Journal of Civil Engineering. 2018. Vol. 16 (2), pp. 81–95. DOI: https://doi.org/10.1080/14488353.2018.1450699
  15. Lu Dong, Zhong Jing. Carbon-based nanomaterials engineered cement composites: a review. Journal of Infrastructure Preservation and Resilience. 2022. 3. 10. https://doi.org/1186/s43065-021-00045-y
  16. Khan M.A., Imam M.K., Irshad K., Ali H.M., Hasan M.A., Islam S. Comparative overview of the performance of cementitious and non-cementitious nanomaterials in mortar at normal and elevated temperatures. Nanomaterials. 2021. 11 (4). 911. https://doi.org/10.3390/nano11040911
  17. Agzamov F.A., Grigoryev A.Y. Modification of Portland cement with nanoadditives. Nanotechnologies in Construction. 2022. 14 (4), pp. 319–327. https://doi.org/10.15828/2075-8545-2022-14-4-319-327
  18. Ahmed A. Amer, Tarek M. El-Sokkary, Nagwa I. Abdullah. Thermal durability of OPC pastes admixed with nano iron oxide. HBRC Journal. 2015. Vol. 11. Iss. 2, pp. 299–305. https://doi.org/10.1016/j.hbrcj.2014.04.002
  19. Ghazanlou S.I., Jalaly M., Sadeghzadeh S. et al. A comparative study on the mechanical, physical and morphological properties of cement-micro/nano Fe3O4 composite. Scientific Reports. 2020. Vol. 10. 59. https://www.nature.com/articles/s41598-020-59846-y
  20. Aref Sadeghi-Nik, Javad Berenjian, Ali Bahari, Abdul Sattar Safaei, Mehdi Dehestani. Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construction and Building Materials. 2017. Vol. 155, pp. 880–891. https://doi.org/10.1016/j.conbuildmat.2017.08.107
  21. Kanagaraj B., Nammalvar A., Andrushia A.D., Gurupatham B.G.A., Roy K. Influence of nano composites on the impact resistance of concrete at elevated temperatures. Fire. 2023. 6 (4). 135. https://doi.org/10.3390/fire6040135
  22. Europäische Patentanmeldung EP 3 138 932 A1 Verfahren und vorrichtung zur gewinnung eines pulvers aus partikeln von wolfram oder wolframverbindungen mit einer partikel grösse im nano-, mikron- oder submikronbereich. Galuga A., Baranov G., Gavrish V., Smirnov S., Losenkov A., Vostrognutov S. Declared 01.09.2015. Published 08.03.2017.
  23. Chaika T.V., Gavrish V.M., Pavlenko V.I., Cherkashina N.I. Influence of high-dispersive powder mixture of WC and TiC on the composite materials properties. Nanotechnologies in construction. 2023. No. 15 (1), pp. 14–26. EDN: TSWXBD. https://doi.org/10.15828/2075-8545-2023-15-1-14-26
  24. Chayka T.V., Gavrish V.M., Cherkashina N.I., Sidelnikov R.V., Romanyuk D.S. Modification of composite materials with highly dispersed WC and WO3 powders. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 121–128. (In Russian). https://doi.org/10.31659/0585-430X-2023-818-10-121-128
  25. Chayka T.V., Gavrish V.M., Rapatskiy Yu.L., Lypka V.M., Chayka А.К. Effects of highly dispersed WC powder on the properties of cement stone at elevated temperatures. Advanced technologies and materials: Materials of the International Scientific and Practical Conference. Sevastopol. 2022. pp. 437–439. (In Russian).
  26. Tantawy M. Effect of high temperatures on the microstructure of cement paste. Journal of Materials Science and Chemical Engineering. 2017. Vol. 5, pp. 33–48. 10.4236/msce.2017.511004
  27. Leonovich S.N., Litvinovsky D.A., Chernyakevich O.Yu., Stepanova A.V. Prochnost, treshchinostojkost i dolgovechnost konstrukcionnogo betona pri temperaturnyh i korrozionnyh vozdejstviyah [Strength, crack resistance and durability of structural concrete under temperature and corrosion influences]. Minsk: BNTU. 2016. 393 p.
  28. Demin Jiang, Haodong Xu, Shuchen Lv et al. Properties of flame-retardant leaf fiber cement-based composites at high temperatures. Heliyon. 2022. Iss. 8 (12). e12175. https://doi.org/10.1016/j.heliyon.2022.e12175
  29. Abdelmelek N., Lubloy E. Evaluation of the mechanical properties of high-strength cement paste at elevated temperatures using metakaolin. Journal of Thermal Analysis and Calorimetry. 2021. Vol. 145, pp. 2891–2905. https://doi.org/10.1007/s10973-020-09992-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Weight loss of cement samples at temperatures 20–800°C at temperatures, modified with: tungsten carbide powder (a), tungsten oxide (b), mixture of tungsten and titanium carbides (c)

Download (216KB)
3. Fig. 2. Residual strength of cement samples at temperature 20–800°C, modified with: tungsten carbide powder (a); tungsten oxide (b); a mixture of tungsten and titanium carbides (c)

Download (228KB)
4. Fig. 3. Microstructure of cement samples after exposure to high temperatures at magnification ×10000 times: а – 20°С; b – 300°С; c – 600°С: d – 800°С

Download (668KB)

Copyright (c) 2024 ООО РИФ "СТРОЙМАТЕРИАЛЫ"

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies