Dynamics of precession of the Thompson top

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, the dynamics of precession of the Thompson top was studied. Test benches have been developed and experimental work has been carried out. Based on the data obtained, the dependences of the angular velocity of precession at high initial values of up to 340 rad/s are shown. Analytical studies were carried out and the dependences of energy changes during precession were obtained. The relationship between the roughness coefficient and the resulting friction moment is obtained. The relationships between the work of friction and the roughness coefficient were obtained, which gives an understanding of the dynamics of energy indicators during the entire process. The question remains open about the use of a viscous friction model and a more detailed study of the proportionality coefficient to establish refined dependencies for precession. The experimental data obtained show the influence of the roughness coefficient on precession and on the occurrence of the friction force, leading to the capsizing of the top. Further research in this matter should show the possibility of applicability of the viscous model and the study of critical points, namely the rise to the leg and the passage of the highest value of the moment of inertia.

全文:

受限制的访问

作者简介

А. Andreev

Federal State Budgetary Educational Institution of Higher Education, Astrakhan State Technical University

编辑信件的主要联系方式.
Email: aresut79@mail.ru
俄罗斯联邦, Astrakhan

А. Semenov

Federal State Budgetary Educational Institution of Higher Education, Astrakhan State Technical University

Email: aresut79@mail.ru
俄罗斯联邦, Astrakhan

B. Slavin

Federal State Budgetary Educational Institution of Higher Education, Astrakhan State Technical University

Email: aresut79@mail.ru
俄罗斯联邦, Astrakhan

参考

  1. Zobova A.A. Nestacionarnye dvizheniya dvusfericheskogo kitajskogo volchka // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. № 4-2. P. 143–144.
  2. Koronatov V.A. O suhom trenii pri nepostupatel’nom skol’zhenii tela i kritika teorii Kontensu–Zhuravleva // Sistemy. Metody. Tekhnologii. 2019. № 1. P. 21–28. https://doi.org/10.18324/2077-5415-2019-1-21-28
  3. Ivanov A.P. Sravnenie modelej treniya v dinamike shara na ploskosti // Russian Journal of Nonlinear Dynamics. 2010. V 6. № 4. P. 907–912. https://doi.org/10.20537/nd1004015
  4. Ivanov A.P. Ob usloviyah otryva v zadache o dvizhenii tverdogo tela po sherohovatoj ploskosti // Nelinejnaya dinamika. 2008. V. 4. № 3. P. 303–312. https://doi.org/10.20537/nd0803003
  5. Kozlov V.V. Realizaciya neintegriruemyh svyazej v klassicheskoj mekhanike // Dokl. AN SSSR. 1983. V. 272. № 3. P. 550–554.
  6. Kozlov V.V. Zamechanie o suhom trenii i negolonomnyh svyazyah // Nelinejnaya dinamika. 2010. V. 6. № 4. P. 903–906. https://doi.org/10.20537/nd1004014
  7. ZHuravlev V.F. Zakonomernosti treniya pri kombinacii skol’zheniya i vercheniya // Izvestiya Akademii nauk. Mekhanika tverdogo tela. 2003. № 4. P. 81–89.
  8. ZHuravlev V.F., Kireenkov A.A. O razlozheniyah Pade v zadache o dvumernom kulonovom trenii // Izvestiya Rossijskoj akademii nauk. Mekhanika tverdogo tela. 2005. № 2. P. 3–14.
  9. Zagordan A.A. Sovremennoe sostoyanie teorii shimmi // Trudy MAI. 2011. № 47. P. 2.
  10. Hertz N. Uber die Beruhrung fester elasticher Korper und uber die Harte // Verrhandlungen des Vereins zur Berforderung des Gewerbefleisses, Leipzig, Nov. 1882.
  11. Muskhelishvili N.I. Singulyarnye integral’nye uravneniya. Granichnye zadachi teorii funkcij i nekotorye ih prilozheniya k matematicheskoj fizike. – M.-L: Gostekh-izdat, 1946. – 448 pp.
  12. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoj teorii uprugosti. Osnovnye uravneniya. Ploskaya teoriya. Kruchenie i izgib. M.–L.: Izd-vo AN SSSR, 1949. 635 p.
  13. Galin L.A. Vdavlivanie shtampa pri nalichii treniya i scepleniya // PMM. 1945. V № 5. P. 413–414.
  14. Galin L.A. Kontaktnye zadachi teorii uprugosti. M.: Gostekhteoretizdat, 1953. 264 p.
  15. Gladwell G.M.L. Contact Problems in the Classical Theory of Elasticity theory. Alphen an den Rijn: Sijthoff and Noordhoff, 1980. https://doi.org/10.1002/zamm.19810611228
  16. Karapetyan A.V., Municyna M.A. Dinamika volchka tip-top pri vyazkom trenii // Trudy Moskovskogo fiziko-tekhnicheskogo instituta. 2021. V. 13. № 1 (49). P. 114–121. https://doi.org/10.53815/20726759_2021_13_1_114
  17. Or A.C. The dynamics of a tippe-top // SIAM J. Appl. Math. 1994. V. 54. P. 597–609. https://doi.org/10.1137/S0036139992235123
  18. Cross R. The rise and fall of spinning tops / Cross R. // Am. J. Phys. 2013. V. 81. № 4. P. 280–289. https://doi.org/10.1119/1.4776195
  19. Takano. H. Spin reversal of a rattleback with viscous friction // Regular and Chaotic Dynamics. 2014. V. 19. № 1. P. 81–99. https://doi.org/10.1134/S1560354714010067
  20. Zhuravlev V.F., Klimov D.M. O dinamike volchka Tomsona (tip-top) na ploskosti s real’nym suhim treniem // Izv. RAN. MTT. 2005. № 6. P. 157–168.
  21. Zhuravlev V.F. O modeli suhogo treniya v zadachah dinamiki tverdyh tel // Uspekhi mekhaniki. 2005. V. 3. № 3. P. 58–76.
  22. Karapetyan A.V. Global’nyj kachestvennyj analiz dinamiki kitajskogo volchka (tip-top) // Izvestiya Rossijskoj akademii nauk. Mekhanika tverdogo tela. 2008. № 3. P. 33–41. https://doi.org/10.3103/S0025654408030059
  23. Zobova A.A. Obzor modelej raspredelennogo suhogo treniya // Prikladnaya matematika i mekhanika. 2016. V. 80. № 2. P. 194–206.
  24. O’Brien S., Synge J.L. The instability of the tippe-top explained by sliding friction // Proc. Roy. Irish Acad. Sec. A. 1953. V. 56. № 3. Р. 23–35.
  25. Andreev A.I., Chanchikov V.A., Slavin B.M., Perekrestov A.P., Semenov A.E. Issledovanie dinamiki sily i momenta treniya pri precessii volchka Tompsona // Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2024. № 24. P. 17–22. https://doi.org/10.26160/2658-3305-2024-24-17-22
  26. Andreev A.I., CHanchikov V.A., Slavin B.M., Perekrestov A.P. Issledovanie dinamiki kineticheskoj energii volchka Tompsona // Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2023. № 21. P. 30–34. https://doi.org/10.26160/2658-3305-2023-21-30-34
  27. Andreev A.I., CHanchikov V.A., Slavin B.M., Perekrestov A.P., Kozlova I.A. Issledovanie dinamiki potencial’noj energii volchka Tompsona i ego primenenie v potenciometrah // Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2023. № 19. P. 30–34. https://doi.org/10.26160/2658-3305-2023-19-30-34
  28. Andreev A.I., Perekrestov A.P. Analysis on non-stationary gyroscopes and their application in measurement technology // J. Phys.: Conf. Ser. 2021. V. 2091. P. 012006. https://doi.org/10.1088/1742-6596/2091/1/012006

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Rig for studying the precession of a rigid body in suspension: (a) – diagram, (b) – view of the working part: 1 – top connected to an electric motor, 2 – substrate, 3 – lifting table, 4 – strain gauge, 5 – damper, 6 – setting spring.

下载 (518KB)
3. Fig. 2. Rig for studying the precession of a rigid body in a free state: 1 – housing, 2 – substrate, 3 – plates, 4 – coupling, 5 – electric motor, 6 – disengagement, 7 – tachometer, 8 – guides, 9 – bearing, 10 – strain gauges, 11 – computer (HX711 + Arduino Uno + PC).

下载 (290KB)
4. Fig. 3. Change in angular velocity ω (rad/s) over time t (s) during free precession on surfaces with different roughness at an initial angular velocity from 250 to 340 rad/s: theoretical solution (○), friction coefficient ξ = 0.22 (◊), friction coefficient ξ = 0.31 (∆), friction coefficient ξ = 0.51 ( ).

下载 (182KB)
5. Fig. 4. Change in angular velocity ω (rad/s) over time t (s) during free precession on surfaces with different roughness at an initial angular velocity from 35 to 180 rad/s: steel top on steel (○), steel top on concrete ( ), plastic top on steel (◊), plastic top on concrete (∆).

下载 (183KB)
6. Fig. 5. Dependence of the resulting forces (from the friction torque) F (N) on the roughness coefficient ξ (the angular velocity in this experiment is 340 rad/s).

下载 (156KB)
7. Fig. 6. Movement of the point of contact of the top with the surface relative to the center of gravity: A is the center of gravity, B is the top leg, B1–B6 are the set of contact points, G is the zone of impossibility of contact with the surface.

下载 (272KB)
8. Fig. 7. Movement of the center of gravity relative to the initial position of the center of gravity: 1 is the body of the top, 2 is the leg, 3 is the trajectory of the center of gravity, A1–A8 are the initial position of the center of gravity and its movement over time.

下载 (373KB)
9. Fig. 8. Change in kinetic energy T (J) versus time t (s) at an initial angular velocity of 340 rad/s (the black line shows the exponential dependence, the blue line is the approximation taking into account the rise of the points at the moment of maximum moment of inertia).

下载 (152KB)
10. Fig. 9. Dependence of the work of the friction force A (J) on the coefficient ξ.

下载 (121KB)

版权所有 © Russian Academy of Sciences, 2025