Two channels of minority charge carriers recombination in a homogeneous semiconductor target

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The process of of non-stationary diffusion of nonequilibrium minority charge carriers is considered by mathematical modeling methods, which is realized after the termination of the effect of an electronic probe on a homogeneous semiconductor target. For a low-energy (up to 10 keV) electron probe, a mathematical model of two-dimensional diffusion of charge carriers in a homogeneous semiconductor material is proposed, taking into account the dynamics of changes in target temperature after the termination of electron irradiation of the probe. When calculating the dependence on the coordinates of the density of nonequilibrium minority charge carriers generated by an electron probe, a mathematical model of energy loss by primary electrons was used, taking into account the separate contribution of electrons that experienced small-angle scattering and absorbed into the target and the contribution of backscattered electrons that experienced a small number of scattering at large angles and left the target. The differential equation of thermal conductivity is solved approximately using the projection method. The quantitative description of the temperature dependences of the effective lifetime and the diffusion coefficient of the generated charge carriers was carried out taking into account the available results of experimental electron probe studies of cathodoluminescence of homogeneous monocrystalline gallium nitride. Model calculations have been performed for the diffusion of excitons in homogeneous monocrystalline gallium nitride in the presence of two independent recombination channels of nonequilibrium charge carriers.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Е. Seregina

Bauman Moscow State Technical University (National Research University)

Хат алмасуға жауапты Автор.
Email: evfs@yandex.ru
Ресей, Kaluga

M. Stepovich

Tsiolkovsky Kaluga State University

Email: evfs@yandex.ru
Ресей, Kaluga

M. Filippov

Kurnakov Institute of General and Inorganic Chemistry RAS

Email: evfs@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Stepovich M.A., Turtin D.V., Seregina E.V., Polyakov A.N. // J. Phys.: Conf. Ser. 2019. V. 1203. P. 012095. https://www.doi.org/10.1088/1742-6596/1203/1/012095
  2. Серегина Е.В., Степович М.А., Макаренков А.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 1. С. 93. https://www.doi.org/10.7868/S0207352818010158
  3. Серегина Е.В., Степович М.А., Филиппов М.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 3. C. 74. https://www.doi.org/10.31857/S1028096023030159
  4. Амрастанов А.Н., Серегина Е.В., Степович М.А., Филиппов М.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 8. С. 48. https://www.doi.org/10.1134/S0207352818080036.
  5. Амрастанов А.Н., Серегина Е.В., Степович М.А. // Известия РАН. Серия физическая. 2019. Т. 83. № 11. С. 1455. https://www.doi.org/10.1134/S0367676519110024
  6. Noltemeyer M., Bertram F., Hempel T., Bastek B., Polyakov A., Christen J., Brandt M., Lorenz M., Grundmann M. // J. Mater. Res. 2012. V. 27. № 17. P. 2225.
  7. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Прикладная физика. 2012. № 6. С. 41.
  8. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Прикладная физика. 2015. № 4. C. 11.
  9. Поляков А.Н., Noltemeyer M., Christen J., Степович М.А., Туртин Д.В. // Перспективные материалы. 2016. № 2. C. 74.
  10. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2012. № 11. С. 35.
  11. Polyakov A.N., Smirnova A.N., Stepovich M.A., Turtin D.V. // Lobachevskii Journal of Mathematics. 2018. V. 39. № 2. P. 259.
  12. Turtin D.V., Stepovich M.A., Kalmanovich V.V., Seregina E.V. // J. Math. Sci. 2021. V. 255. № 6. P. 773. https://www.doi.org/10.1007/s10958-021-05414-2
  13. Серегина Е.В., Степович М.А., Макаренков А.М. // Итоги науки и техники. Сер. Соврем. мат. и ее прил. Тематический обзор. 2021. Т. 200. № 1(11). С. 105. https://www.doi.org/10.36535/0233-6723-2021-200-105-114
  14. Серегина Е.В., Степович М.А., Филиппов М.Н. // Итоги науки и техники. Сер. Соврем. мат. и ее прил. Тематический обзор. 2024. Т. 233. С. 89. https://www.doi.org/10.36535/2782-4438-2024-233-89-98
  15. Ханефт А.В., Долгачев В.А., Дугинов Е.В., Иванов Г.А. // Вестник КемГУ. 2013. Т. 3. № 3 (55). C. 31.
  16. Seregina E.V., Polyakov A.N., Stepovich M.A. // J. Phys.: Conf. Ser. 2018. P. 012032.
  17. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Известия РАН. Серия физическая. 2012. Т. 76. № 9. С. 1082.
  18. Properties of group III nitrides. / Ed. Edgar J. H. London: INSPEC. 1994. 302 p.
  19. Properties, processing and application of GaN and related semiconductors / Ed. Edgar J.H. London: INSPEC. 1999. 830 p.
  20. Novikov Yu.A., Rakov A.V., Filippov M.N. // Measurement Techniques. 2004. V. 47. № 5. P. 438. https://www.doi.org/10.1023/B:METE.0000038108. 67246.68

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependence of the temperature of a single-crystal GaN target on time at the point of incidence of the electron probe (at ).

Жүктеу (11KB)
3. Fig. 2. Experimental temperature [5] (a) and calculated time (b) dependences of the exciton lifetime τ in a single-crystal GaN sample in a model with one exciton recombination channel.

Жүктеу (23KB)
4. Fig. 3. Experimental temperature [5] (a) and calculated time (b) dependences of the exciton diffusion coefficient D in a single-crystal GaN sample in a model with one exciton recombination channel.

Жүктеу (25KB)
5. Fig. 4. The concentration of excitons c(r, t), calculated using model (1), (2) for one channel of exciton recombination, in the case of constant electrophysical parameters of the target (a) and calculated using model (5), (2) of two-channel exciton recombination, in the case of a variable effective lifetime of excitons (b) at τ1 = τ and τ2 = 10τ at τ = 236 ps and the coefficient α = 0.1.

Жүктеу (38KB)
6. Fig. 5. Section of surfaces (1) and (2) by plane r = 0 at τ1 = τ and τ2 = 10τ at τ = 236 ps and coefficient α = 0.1.

Жүктеу (10KB)
7. Fig. 6. Section of surface (1) at τ1 = τ and τ2 = 10τ, τ = 236 ps, coefficient α = 0.1 and surface calculated using the model with variable electrophysical parameters (9), (2), (2) plane r = 0.

Жүктеу (9KB)
8. Fig. 7. Section of surface (1) at τ1 = τ and τ2 = 15τ, τ = 236 ps, coefficient α = 0.1 and surface calculated using the model with variable electrophysical parameters (9), (2), (2) plane r = 0.

Жүктеу (10KB)

© Russian Academy of Sciences, 2025