Calculation of parameters of electromagnetic radiation of accelerated electron beams during sliding interaction with a dielectric surface

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The parameters of electromagnetic radiation that should be generated during guiding of accelerated electrons (extended sliding interaction of accelerated electrons with a dielectric surface) pressed to the surface of a dielectric plate by an external electric field are calculated. The model of the effect (guiding) is proposed based on an analysis of the solution to the Hamilton equation for the motion of electrons in an external electric field and in an electrostatic field created by electrons deposited on the surface of a dielectric plate. Superposition of these fields leads to the fact that during guiding electrons experience transverse vibrations relative to the surface of the plate, i.e. acquire lateral acceleration. And this, as is known, should lead to the generation of electromagnetic radiation, the frequency and intensity of which depend on the electron energy, similar to the radiation of undulators and wigglers. Calculations show that when electrons are guided, radiation should be generated depending on their energy. The maximum of its intensity is in the region from IR to the radio frequency range.

Texto integral

Acesso é fechado

Sobre autores

L. Zhilyakov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Autor responsável pela correspondência
Email: zhiliakovla@mail.ru
Rússia, Moscow

V. Kulikauskas

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: zhiliakovla@mail.ru
Rússia, Moscow

A. Pronkin

Joint Institute for High Temperatures RAS

Email: zhiliakovla@mail.ru
Rússia, Moscow

Bibliografia

  1. Zhilyakov L.A., Kulikauskas V.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2024. V. 18. № 2. P. 424. https://doi/org/10.1134/S102745102402040X
  2. Винокуров Н.А., Левичев Е.Б. // УФН. 2015. Т. 185. Вып. 9. С. 917. https://doi/org/10.3367/UFNr.0185.201509b.0917
  3. Алферов Д.Ф., Башмаков Ю.А., Черенков П.А. // УФН. 1989. Т. 157. Вып. 3. С. 389.
  4. Жуковский К.В.// Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия. 2017. № 2. С. 29.
  5. Смоляков Н.В. // ЖТФ. 1992. Т. 62. № 3. С. 137.
  6. Кульчин Ю.Н. Ускорители заряженных частиц и синхротронное излучение. ДВФУ: Владивосток, 2021. 105 с.
  7. Михайлин В.В., Смирнов И.М. Синхротронное излучение. М.: Знание, 1988. 64 с.
  8. Шкаруба В.А., Брагин А.В., Волков А.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 5. С. 627. https://doi/org/10.31857/S0367676522701289
  9. Цуканов В.М., Хрущев С.В., Волков А.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 5. С. 660. https://doi/org/10.31857/S0367676522701277
  10. Стрельников Н.О. Проблемы создания прецизионных ондуляторов на постоянных магнитах для рентгеновских на свободных электронах: Дис. … канд. физ.-мат. наук: 01.04.20. Новосибирск: ИЯФ СО РАН, 2016. 135 с.
  11. Kinjo R., Tanaka T. // Phys. Rev. 2014. V. 17. Р. 122401. https://doi/org/10.1103/PhysRevSTAB.17.122401
  12. Зорин А.В., Мезенцев Н.А., Цуканов В.М. // Изв. РАН. Сер. физ. 2013. Т. 77. № 9. С. 1354.
  13. Жиляков Л.А., Пронкин А.А. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2011. № 3. С. 85.
  14. Ландау Л.Д., Лифшиц Е.М. // Теоретическая физика. Механика. Т. 1. М.: Физматлит, 2004. 224 с.
  15. Вохмянина К.А., Жиляков Л.А., Похил Г.П. и др. // Изв. РАН. Сер. физ. 2006. Т. 70. № 6. С. 828.
  16. Жиляков Л.А., Куликаускас В.С. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2022. № 6. С. 71. https://doi/org/10.31857/S1028096022060188
  17. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Т. 5. М.: Мир, 1965. 292 с.
  18. Джексон Дж. Классическая электродинамика. М.: Мир, 1965. 703 с.
  19. Янке Е., Эмде Ф., Леш Ф. Специальные функции. М.: Наука, 1977. 344 с.
  20. Петров Е.Ю. Излучение электромагнитных волн движущимися заряженными частицами. Нижний Новгород: НГУ, 2019. 89 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. An example of the movement of an electron during guiding along a surface with electrons deposited on it.

Baixar (7KB)
3. Fig. 2. The trajectory of an electron’s movement between charged plates near a dielectric surface with electrons deposited on it.

Baixar (9KB)
4. Fig. 3. Electron radiation intensity integrated over all angles for a period during guiding: 1 — during braking in the field of electrons on the surface of a dielectric; 2 — during acceleration in the electric field of a capacitor with a field strength of 1.24 × 106 V/m; γ = 1 (solid lines), 5 (long dash), 10 (dashed line), 15 (dash-dotted line), 17 (double dash-dotted line), 20 (small dash).

Baixar (19KB)
5. Fig. 4. Dependence of the radiation intensity during braking at a charged dielectric surface located in a capacitor with a field strength of: 105 (1); 106 (2); 107 V/m (3); γ = 1 (solid lines), 10 (dotted lines), 20 (dashed lines).

Baixar (15KB)
6. Fig. 5. Frequency at maximum radiation intensity of an electron moving in an electric field of a capacitor with a strength of 105 (1), 106 (2), 107 V/m (3) with an average acceleration of deceleration in the field of electrons deposited on the dielectric surface (solid lines) and with acceleration in an applied external electric field (dashed lines).

Baixar (15KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025