Витамин D в профилактике костных и метаболических нарушений

Обложка

Цитировать

Полный текст

Аннотация

Лекция, адресованная врачам различных специальностей, посвящена роли витамина D в профилактике костных и метаболических нарушений. Современные данные о физиологических эффектах витамина D подтверждают его многофакторное влияние на костную и мышечную систему - как прямое, так и опосредованное. Взаимное влияние ожирения и дефицита витамина D определяется несколькими механизмами, при этом снижение биодоступности витамина D при ожирении становится причиной развития вторичного гиперпаратиреоза. Существующие алгоритмы профилактики и лечения дефицита витамина D учитывают не только исходный уровень 25(ОН)D, но и возраст пациента, его индекс массы тела, а также наличие сопутствующих заболеваний. Современные клинические рекомендации Российской ассоциации эндокринологов по профилактике и лечению дефицита витамина D являются эффективным инструментом в ведении пациентов. При профилактике и лечении дефицита витамина D лицам, страдающим ожирением, требуются более высокие дозы колекальциферола. Коррекцию дефицита (ниже 20 нг/мл) и недостаточности витамина D (20-29 нг/мл) у взрослых рекомендуется начинать с суммарной насыщающей дозировки колекальциферола с дальнейшим переходом на поддерживающие дозы. Насыщение может проводиться с использованием различных схем терапии.

Полный текст

Биохимия и физиология витамина D Витамин D - секостероидный по строению жирорастворимый витамин, получаемый с пищей или синтезируемый в коже человека под воздействием ультрафиолетового (УФ) излучения. Он принимает участие в регуляции кальций-фосфорного, липидного и углеводного обмена, врожденного и приобретенного иммунитета, противоопухолевой защиты и многих других функций организма [1]. Витамин D естественным образом присутствует лишь в очень ограниченном количестве продуктов питания. Синтез его в организме человека возможен только при определенных условиях, когда УФ-лучи солнечного света попадают на кожу. Витамин D, получаемый из продуктов питания и в виде добавок к пище, а также образующийся при пребывании на солнце, биологически инертен. Для активации и превращения в активную форму D-гормона - 1,25-дигидроксивитамин D [1,25(ОН)2D] в организме должен пройти два процесса гидроксилирования: первый - происходит в печени и превращает витамин D в 25-гидроксивитамин D [25(OH)D], также известный как кальцидиол; второй - происходит преимущественно в почках с участием фермента CYP27B1 (1a-гидроксилазы), и его результатом является синтез физиологически активного 1,25(OH)2D, или кальцитриола [1], уровни которого в крови определяются большей частью активностью 1a-гидроксилазы в почках, находящейся под контролем паратиреоидного гормона (ПТГ), и жестко регулируются отрицательной обратной связью, которая замыкается ингибированием 1a-гидроксилазы высокими концентрациями самого кальцитриола и фактора роста фибробластов 23 (FGF23). Ограничению образования активной формы витамина способствует стимуляция фермента CYP24A1 (24-гидроксилазы), который превращает кальцитриол в неактивную, водорастворимую форму кальцитроевой кислоты, в дальнейшем выводимой из организма с желчью. FGF23, секретируемый преимущественно остеоцитами костной ткани, способствует активации 24-гидроксилазы в ответ на высокие концентрации D-гормона и повышение концентрации фосфора в крови [2]. Считается, что до 80% витамина D в организме человека является следствием его эндогенного синтеза в коже, активируемого воздействием УФ-лучей спектра В с длиной волны 290-315 нм [3]. Однако в силу ряда причин данный источник витамина D имеет крайне ограниченное значение, в том числе в Российской Федерации. Прежде всего территория страны расположена в зоне низкой инсоляции с невысокой интенсивностью солнечного излучения вследствие большого зенитного угла солнца, который дополнительно увеличивается в зимние месяцы, так что солнечные лучи фильтруются через озоновый слой под более косым углом. Поэтому в различных регионах страны синтез витамина D в коже не происходит от 4 до 6 мес в году [1, 2]. Также количество УФ-излучения, доступного для синтеза витамина D, зависит от толщины слоя облаков и загрязненности атмосферы, в результате чего может увеличиваться время, необходимое для синтеза адекватного количества витамина D [4]. Потребление витамина D с пищей В соответствии с клиническими рекомендациями Российской ассоциации эндокринологов, согласующимися с позицией Международного общества эндокринологов (Endocrine society), рекомендуемая суточная норма потребления витамина D составляет не менее 600-800 МЕ для взрослых в возрасте 18-50 лет, не менее 800-1000 МЕ для лиц старше 50 лет, не менее 800-1200 МЕ для беременных и кормящих женщин (по мнению ряда специалистов - 2000 МЕ в течение всей беременности), при этом, согласно мнению экспертов, для поддержания оптимальных уровней витамина D крови более 30 нг/мл может требоваться ежедневный прием свыше 1500-2000 МЕ/сут, а при ожирении и нарушениях метаболизма витамина D - более 6000-8000 МЕ/сут [1, 5]. Диагностика дефицита витамина D, согласно действующим национальным, а также международным клиническим рекомендациям, основана на определении уровня 25(ОН)D в сыворотке крови, и адекватными принято считать уровни 25(ОН)D≥30 нг/мл; уровень 25(ОН)D<20 нг/мл в сыворотке крови расценивается как дефицит витамина D, диапазон 20-29 нг/мл трактуется как недостаточная обеспеченность организма витамином [1, 5]. В РФ проведен ряд исследований, результаты которых согласуются с мировыми данными и подтверждают повсеместную распространенность низких уровней витамина D среди населения страны [4]. Кроме того, исследования, посвященные оценке статуса витамина D у отдельных категорий лиц, подтверждают ассоциацию наличия дефицита витамина D с развитием и более тяжелым течением различных хронических заболеваний. Основное физиологическое действие витамина D в поддержании гомеостаза кальция заключается в содействии всасыванию кальция из кишечника [6]. Этот вывод основан на наблюдении, что рахит и остеомаляция могут быть предотвращены у VDR-нулевых мышей, получающих профилактическую диету с высоким содержанием кальция, фосфора и лактозы [7]. Кроме того, когда пациентов с наследственным рахитом, устойчивым к 1,25(OH)2D3, лечат внутривенным введением кальция или высокими дозами перорального кальция, скелетные фенотипы этих пациентов изменяются в сторону нормального [8]. В традиционной модели облегченной диффузии 1,25(OH)2D3 действует, регулируя: а) поступление кальция через апикальный кальциевый канал TRPV6; б) трансклеточное движение кальция путем связывания с кальций-связывающим белком кальбиндином D; в) экструзию кальция из клетки плазматической мембраной кальций-чувствительной АТФазы PMCA2b. Однако исследования на TRPV6- и кальбиндин-D-нулевых мышах поставили под сомнение эту традиционную точку зрения. В самом деле, нет никаких фенотипических различий между мышами с отсутствием кальбиндина-D9k или TRPV6 и мышами дикого типа при нормальном содержании кальция в рационе [9]. Эти данные показывают, что при адекватном поступлении кальция с пищей кальбиндин-D9k и TRPV6 являются избыточными для кишечной абсорбции кальция, что предполагает компенсацию их функций другими каналами или белками, которые еще предстоит идентифицировать. Также было продемонстрировано, что специфичная для кишечника экспрессия TRPV6 приводит к значимому увеличению абсорбции кальция в кишечнике и плотности костей у VDR-нулевых мышей, что указывает на важную роль TRPV6 в процессе абсорбции кальция. Длительное время двенадцатиперстная кишка была в центре внимания исследований, связанных с 1,25(OH)2D3-регулируемой абсорбции кальция, но большая часть абсорбции кальция происходит в дистальном отделе тонкого кишечника [10]. Действительно, исследования, в которых VDR экспрессируется или удаляется специфически в дистальной части кишечника, подчеркивают важность как дистальных, так и проксимальных сегментов кишечника в витамин D-опосредованном гомеостазе кальция и минерализации костей [11]. Влияние витамина D на костную систему Дефицит витамина D связан с заболеваниями, влияющими на здоровье костей (например, рахит, остеомаляция и остеопороз). Эфес Соранский в I-II вв. н.э. в своих трудах описывал ребенка, у которого позвоночник изогнулся в положении сидя и чьи кости бедра были согнуты под тяжестью тела. В конце XVI в. Рейснер писал о заболевании, возникающем среди населения Швейцарии и Голландии с такими особенностями, как скрученные кости. Спустя полвека болезнь, названная рахитом, была впервые названа одной из причин смерти в Англии. Вплоть до начала XX в. симптомы рахита были обычным явлением среди населения промышленных городов с высокой распространенностью в зимние месяцы [12]. Симптомы рахита включают изменения в костях (например, деформации ног), отек запястья с расширением зон роста, отсроченное закрытие родничков, черепно-лицевые дисморфии и мышечно-скелетные боли. Последующие симптомы, такие как остановка сердца, тетания, или судороги, могут быть вызваны гипокальциемией [13]. 1,25(OH)2D3 способен провоцировать мобилизацию кальция и фосфора из скелета посредством процесса, который включает как стимуляцию остеокластной резорбции кости, так и индукцию образования новых остеокластов из клеток-предшественников [12]. Этот механизм использует способность гормона индуцировать экспрессию аутокринного TNFa-подобного фактора RANKL (рецептор-активатор лиганда NF-κB), активирующего остеокласты, из хондроцитов, остеобластов и остеоцитов. Недавние исследования показали, что 1,25(OH)2D3 может также играть активную роль в модулировании экспрессии факторов, регулирующих минерализацию, таких как Spp1 (остеопонтин), MGP (белок матрикса gla), ENPP1 (эктонуклеотид-пирофосфатазная фосфодиэстераза 1) и ENPP2, и ANK (прогрессирующий анкилозный белок) и ALPL (кишечная щелочная фосфатаза), а также, возможно, и др. [13]. Механизм высвобождения кальция из кости активируется в случаях недостатка уровней кальция и фосфата в рационе, что приводит к повышению как ПТГ, так и 1,25(ОН)2D3. В таких случаях приоритетное значение имеет поддержание уровня кальция и фосфора в крови, что приводит к резорбции кости и соответствующему структурному ослаблению скелета с повышением риска переломов. Примечательно то, что остеоциты, т.е. зрелые остеобласты, которые полностью инкапсулированы в костный матрикс, не только контролируют высвобождение кальция и фосфата из кости посредством производства RANKL и регуляторов минерализации [14], но также могут влиять на ремоделирование костной ткани непосредственно во время определенных физиологических состояний, таких как лактация [15]. Этот процесс опосредуется как 1,25(OH)2D3, так и ПТГ-подобным пептидом. Также важно отметить, что снижение уровней кальция и фосфора в крови приводит к неспособности кости минерализоваться по физико-химическим принципам, что приводит к рахиту или остеомаляции [16]. Таким образом, исследования подтверждают прямое влияние 1,25(ОН)2D3 на костную ткань, а также косвенное влияние через регуляцию поступления кальция в кость посредством стимуляции всасывания его в кишечнике. Если нормальный уровень кальция в сыворотке крови не может поддерживаться абсорбцией кальция в кишечнике, тогда 1,25(OH)2D3 действует вместе с ПТГ, стимулируя остеокластогенез и увеличивая реабсорбцию кальция в дистальных канальцах почек [17]. Остеомаляция, метаболическое заболевание кости, также как и рахит связанное с дефицитом витамина D, приводит к снижению минерализации костей, но только у взрослых. По данным различных источников, остеомаляция наблюдается при уровне витамина D менее 25-30 нг/мл, что в большинстве случаев является единственным лабораторным признаком заболевания [1]. При клиническом обследовании можно обнаружить неспецифические симптомы, такие как мышечно-скелетная боль, обычно локализованная в области таза, плеч или проксимальной части мышц. На рентгенографических изображениях, показывающих зоны Лоузера, характерны локальные снижения минеральной плотности кости (МПК) и повышенное поглощение радиофармпрепарата этими областями при сцинтиграфии костей [18]. При остеомаляции отсутствуют нарушения микроструктуры костной ткани, костного матрикса, снижена только минерализация. Как правило, остеомаляция сопровождается деформациями костей, а не переломами. Остеопороз - заболевание скелета, характеризующееся снижением костной массы и патологическими изменениями микроархитектоники трабекул костной ткани, что приводит к повышенному риску низкотравматических переломов [19]. Влияние дефицита витамина D на развитие остеопороза проявляется в недостижении пика костной массы и повышенной ее потере в дальнейшем. Диагноз остеопороза подтверждается измерением МПК в поясничном отделе позвоночника или шейке бедра с помощью двухэнергетической рентгеновской абсорбциометрии (DXA). В случае остеопении T-критерий составляет от -2,5 до -1. В случаях остеопороза Т-критерий составляет -2,5 и ниже. МПК между ≤-2,5 и ≤-1 и наличие низкотравматического перелома в типичном месте остеопоротических переломов. Локализации, типичные для остеопоротических переломов, включают в себя кости таза, позвонки, проксимальную часть бедренной кости, проксимальную часть плечевой кости и предплечье [19]. Влияние витамина D на мышечную систему В последнее десятилетие все чаще сообщается о роли витамина D в саркопении - уменьшении массы и силы скелетных мышц вследствие дегенеративных процессов. Витамин D влияет на мышечную силу, размер и дифференцировку мышечных волокон, нервно-мышечные характеристики [20]. Имеются свидетельства того, что с возрастом уменьшение мышечной массы происходит на фоне снижения уровня циркулирующего витамина D, что приводит к мышечной слабости и частым падениям у пожилых людей [21-23]. Систематические исследования, в том числе двойные слепые рандомизированные контролируемые, показали, что риск падений у пожилых может быть снижен при уровне витамина D в сыворотке выше 60 нмоль/л [24, 25]. В том числе исследования указывают на то, что существует связь между уровнем 25(OH)D в сыворотке крови и мышечно-скелетной болью, а также неспецифической болью в спине [24]. О.Gendelman и соавт. сообщили по результатам своих наблюдений о наличии нервной гиперчувствительности, вызванной дефицитом 25(OH)D, с частотой распространенного болевого синдрома в 20% случаев [25]. Ожирение и метаболизм витамина D Патогенетическая взаимосвязь ожирения и дефицита витамина D, по-видимому, обусловлена несколькими механизмами. Во-первых, при ожирении витамин D, являющийся жирорастворимым, распределяется в большом объеме ткани, что приводит к снижению его концентрации в плазме крови. Во-вторых, можно предполагать, что при ожирении снижается естественная продукция витамина D в коже под влиянием солнечного света, поскольку тучные люди носят более закрытую одежду и меньше времени проводят на солнце. Чтобы уточнить механизмы, приводящие к дефициту витамина D при ожирении, J.Worthman и соавт. изучили сывороточную концентрацию D2, D3 и 25(ОН)D у лиц с ожирением и нормальной массой тела в ответ на УФ-облучение и пероральный прием эргокальциферола [26]. В исследовании приняли участие 19 здоровых лиц (индекс массы тела - ИМТ≤25) и 19 лиц с ожирением (ИМТ>30). Изменения концентрации витамина D3 в течение 24 ч после воздействия УФ-излучения характеризуют синтез витамина D в коже и транспорт его из кожи в кровоток. Несмотря на то что при ожирении площадь поверхности тела больше, увеличение концентрации витамина D3 после УФ-облучения при ожирении оказалось на 57% ниже, чем у лиц без ожирения. Оценка биодоступности витамина D2 при пероральном приеме показала, что кинетика 25(ОН)D имела существенные отличия: при ожирении его максимальная концентрация после перорального назначения эргокальциферола была достоверно ниже, чем в контрольной группе. Очевидно, что депонирование витамина в большом объеме жировой ткани отвечает и за снижение биодоступности витамина D2, поступающего с пищей. Подтверждением гипотезы о том, что снижение сывороточной концентрации 25(ОН)D при ожирении есть следствие депонирования в большом объеме жировой ткани, являются и результаты работы, проведенной S.Arunabh и соавт. [27]. В этой работе изучена взаимосвязь между уровнем 25(ОН)D и массовой долей жировой ткани у здоровых женщин. В результате обследования 410 женщин с ИМТ от 17 до 30 установлена обратная корреляция между процентом жировой ткани и уровнем 25(ОН)D. В 2006 г. опубликованы результаты обследования когорты пациентов, родившихся в Англии, Шотландии и Уэльсе в течение 1 нед в марте 1958 г. (The 1958 British Birth Cohort) [28]. В возрасте 45 лет участники этого исследования - 12 069 человек, постоянно проживающих в Великобритании, прошли обследование. У 7591 (81%) пациента исследован уровень 25(ОН)D в сыворотке крови. По данным этого масштабного исследования уровень сывороточного 25(ОН)D снижался по мере увеличения ИМТ, тогда как уровень гликированного гемоглобина повышался. Уровень 25(ОН)D<30 нг/мл зафиксирован у 80% лиц, имеющих ожирение, и только у 68% лиц без ожирения (р<0,0001). Пациенты с диагностированным ранее сахарным диабетом 2-го типа и пациенты с уровнем гликированного гемоглобина выше 7% имели более низкий уровень сывороточного 25(ОН)D по сравнению с лицами без нарушений углеводного обмена (36,9 нмоль/л против 52,7 нмоль/л). Оказалось, что среди пациентов обоего пола, вне зависимости от возраста прослеживается одна и та же тенденция: по мере увеличения ИМТ наблюдается снижение уровня 25(ОН)D [29, 30]. Обратная корреляция с ИМТ была отмечена не только для 25(ОН)D, но и для содержания 1,25(ОН)2D в сыворотке крови. Сезонные различия концентрации 25(ОН)D в сыворотке крови были в наибольшей степени выражены в группе мужчин моложе 50 лет с нормальной массой тела. Снижение содержания витамина D до уровня, когда можно говорить о его дефиците, чаще всего отмечалось среди пациентов с ИМТ≥40 (у 32% женщин и 46% мужчин). Результаты этого исследования подтверждают, что уровень 25(ОН)D3 в сыворотке крови и его сезонные колебания зависят от ИМТ. Согласно этим данным, каждая 3-я женщина и каждый 2-й мужчина с ИМТ≥40 имеют дефицит витамина D. Несмотря на то что пациенты с морбидным ожирением потребляют гораздо больше пищи, чем лица без ожирения, для них характерен дефицит ряда нутриентов. Наиболее распространенным дефицитом, связанным с ожирением, является снижение концентрации 25(ОН)D, которая, по некоторым данным, ассоциируется с повышенным риском сахарного диабета 2-го типа, сердечно-сосудистых заболеваний и депрессии [30]. Целью исследования, проведенного E.Aasheim и соавт., стала оценка обеспеченности пациентов, обратившихся за помощью к бариатрическому хирургу, витаминами A, B1, В2, B6, C, D и Е по сравнению с контрольной группой здоровых лиц [31]. Витаминная обеспеченность лиц, страдающих морбидным ожирением, была существенно хуже, чем в контрольной группе: у 38% больных выявлен дефицит витаминов В6, С, D и Е. Как уже отмечалось выше, достаточная обеспеченность витамином D может быть констатирована при сывороточном 25(ОН)D>30 нг/мл. Такая концентрация в плазме крови обнаружена только у 4% больных морбидным ожирением. Уровень ПТГ при морбидном ожирении и вторичный гиперпаратиреоз Хорошо известно, что синтез и секреция ПТГ регулируются содержанием кальция и фосфора в сыворотке крови. Также на уровень ПТГ оказывают влияние уровни 25(ОН)D и магния. Вторичный гиперпаратиреоз (ВГПТ), наблюдающийся у пациентов с ожирением в отсутствие хронической болезни почек или других соматических заболеваний, безусловно, может рассматриваться как следствие длительно существующего дефицита витамина D и гипокальциемии. По данным ряда исследователей, частота ВГПТ у лиц с морбидным ожирением достигает 50% [32-35]. В части работ прослеживается положительная корреляция между уровнем ПТГ и ИМТ при ожирении. Также было показано, что уровень 25(ОН)D обратно пропорционален концентрации ПТГ, что позволяет считать ВГПТ прямым следствием дефицита витамина D при ожирении. Возможно, такие факторы, как возраст и длительность ожирения, являются достаточно важными и могут отчасти объяснить разную частоту встречаемости ВГПТ среди людей с ожирением. В данном аспекте представляет интерес исследование, выполненное в университетском госпитале Упсала (Швеция) [36]. Предметом изучения стал гомеостаз кальция у больных с морбидным ожирением (оценка чувствительности паращитовидных желез к индуцированной гипокальцемии, проведенная с помощью клэмп-метода с последовательным введением цитрата и кальция). H.Hultin и соавт. обследовали 108 пациентов с морбидным ожирением. Все больные исходно имели нормальные сывороточные уровни кальция и креатинина, у 70,4% из них был уровень 25(ОН)D в диапазоне 25-75 нмоль/л (т.е. ниже нормы), а у 6,5% - выявлен тяжелый дефицит витамина D [25(ОН)D<25 нмоль/л], и только 23% больных с морбидным ожирением имели нормальный уровень 25(ОН)D, при этом повышенный уровень ПТГ обнаружен лишь у 14% лиц с ожирением. Далее 11 больным с морбидным ожирением провели клэмп-тест, группу контроля составили здоровые добровольцы (n=21) с нормальной массой тела и больные (n=15), страдающие первичным гиперпаратиреозом. Результаты оказались следующими: у всех пациентов с морбидным ожирением чувствительность паращитовидных желез к индуцированной цитратом гипокальцемии оказалась более высокой по сравнению как с больными первичным гиперпаратиреозом, так и со здоровыми добровольцами. Это дает основание предполагать, что ведущую роль в развитии ВГПТ у лиц с ожирением играют не ранние патологические изменения в околощитовидных железах, а дефицит витамина D. Особый интерес представляют исследования, сфокусированные на пациентах с морбидным ожирением, готовящихся к бариатрическим операциям. В 2006 г. опубликована работа A.Carlin и соавт., в которой суммированы результаты обследований 279 пациентов с морбидным ожирением [33]. Дефицит витамина, считавшийся таковым при уровне 25(ОН)D<20 нг/мл, обнаружен в 60% случаев. Повышенный уровень ПТГ отмечался у 48% пациентов. Обратные корреляционные взаимосвязи выявлены между уровнем 25(ОН)D и ИМТ, а также между уровнем ПТГ и ИМТ. Таким образом, еще до проведения бариатрических вмешательств большинство пациентов с морбидным ожирением имеют дефицит витамина D и ВГПТ, которые могут усугубиться после оперативного лечения и при отсутствии должной коррекции привести к тяжелым нарушениям кальциево-фосфорного обмена. Лечение Рекомендуемым препаратом для лечения дефицита витамина D является колекальциферол (D3), что объясняется большей его эффективностью в сравнении с эргокальциферолом (D2) в достижении и сохранении целевых уровней 25(OH)D в сыворотке крови [37]. В РФ зарегистрировано несколько лекарственных препаратов в виде масляного и водного раствора. В составе водного раствора колекальциферол (Аквадетрим) жирорастворимый витамин D эмульгирован в мицеллы, что по данным многочисленных исследований способствует облегчению всасывания при различных заболеваниях, связанных с нарушением качества и секреции желчи. В одной капле как масляного, так и водного раствора (Аквадетрим) содержится одинаковое количество колекальциферола - 500 МЕ. В последнее время колекальциферол стал появляться в продаже как биологически активная добавка к пище в виде раствора, капсул или таблеток. Необходимо принять во внимание, что точность дозирования витамина в биологически активной добавке по сравнению с лекарственными средствами может существенно колебаться, что может потребовать более частого контроля его уровней в крови. Лечение дефицита витамина D (ниже 20 нг/мл) у взрослых рекомендуется начинать с суммарной насыщающей дозы колекальциферола 400 000 МЕ, а для недостаточности витамина D (20-29 нг/мл) - с 200 000 МЕ, с дальнейшим переходом на поддерживающие дозы. Насыщение может проводиться с использованием различных схем терапии. При дефиците витамина D: • ежедневный прием - 14 капель (7000 МЕ) в течение 8 нед; • еженедельный прием - 100 капель (50 000 МЕ) в течение 8 нед; • ежемесячный прием - 150 000 МЕ в течение 3 мес или 200 000 МЕ в течение 2 мес. При недостаточности витамина D: • ежедневный прием - 14 капель (7 000 МЕ) в течение 4 нед; • еженедельный прием - 100 капель (50 000 МЕ) в течение 4 нед; • ежемесячный прием - 150 000 МЕ или 200 000 МЕ однократно. Поддержание уровня 25(ОН)D в сыворотке крови более 30 нг/мл: • ежедневный прием - 2-4 капли (1000-2000 МЕ); • еженедельный прием - 15-30 капель (7000-14000 МЕ). Методы коррекции дефицита витамина D и нарушений обмена кальция при ожирении Потребность детей и взрослых, страдающих ожирением, в витамине D в 2-3 раза превышает суточную дозу, рекомендованную для профилактики в соответствующей возрастной группе [38, 39]. Проведенные исследования подтверждают наличие зависимости между дозой, необходимой для коррекции дефицита витамина D и ИМТ. При назначении колекальциферола пациентам с выраженным дефицитом витамина D [уровень сывороточного 25(ОН)D<15 нмоль/л] в дозировке 10 000 МЕ/сут между значениями сывороточного 25(ОН)D, достигнутыми через неделю лечения, и ИМТ выявлена обратная корреляция - r=0,63, р<0,01 [40]. Авторы сделали заключение, что лица с избыточной массой тела и ожирением для достижения тех же результатов лечения нуждаются в более высоких дозах витамина D. Повышенная потребность больных ожирением в витамине D должна обязательно учитываться при лечении его дефицита. Для достижения целевого уровня сывороточного 25(ОН)D не ниже 30 нг/мл (75 нмоль/л) при ожирении могут понадобиться дозы витамина D от 7000 до 15000 МЕ/сут. Для поддержания достигнутого результата пациенту потребуется прием витамина D в суточной дозе 3000-6000 МЕ. При лечении больных ВГПТ на фоне морбидного ожирения подбор адекватной дозы витамина D проводится в индивидуальном порядке под контролем уровней сывороточного 25(ОН)D и кальция. В данной ситуации возможно использование активных метаболитов витамина D, что в ряде случаев позволяет скорее достичь нормализации уровня ПТГ. Заключение Таким образом, наблюдаемая в настоящее время недостаточная обеспеченность витамином D населения РФ обусловлена как низким уровнем его эндогенного синтеза вследствие географического расположения территории страны, так и недостаточным потреблением с пищей. Профилактика и лечение недостатка витамина D и поддержание оптимальной концентрации 25(ОН)D в крови у населения позволит улучшить состояние костно-мышечной системы, а также снизить риск развития и улучшить контроль некоторых хронических заболеваний. Современные клинические рекомендации Российской ассоциации эндокринологов по профилактике и лечению дефицита витамина D являются эффективным инструментом в ведении пациентов. Ожирение сопровождается снижением биодоступности витамина D, причем по мере увеличения ИМТ у пациентов наблюдается снижение сывороточной концентрации 25(ОН)D и повышение уровня ПТГ крови. При профилактике и лечении дефицита витамина D лицам, страдающим ожирением, требуются более высокие дозы колекальциферола. Патогенетически эта повышенная потребность в витамине D обусловлена распределением витамина в большем объеме жировой ткани. Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. Conflict of interests. The authors declare that there is not conflict of interests.
×

Об авторах

Екатерина Александровна Пигарова

ФГБУ «НМИЦ эндокринологии»

Email: kpigarova@gmail.com
канд. мед. наук, и.о. дир. ИВиДПО, вед. науч. сотр. отд-ния нейроэндокринологии и остеопатий

Наталия Валентиновна Мазурина

ФГБУ «НМИЦ эндокринологии»

Email: natalyamazurina@mail.ru
канд. мед. наук, вед. науч. сотр. отд. терапевтической эндокринологии

Екатерина Анатольевна Трошина

ФГБУ «НМИЦ эндокринологии»

Email: troshina@inbox.ru
чл.-кор. РАН, д-р мед. наук, проф., рук. отд. терапевтической эндокринологии, зам. дир. по координации эндокринологической службы

Список литературы

  1. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е. и др. Клинические рекомендации российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016; 62 (4): 60-84.
  2. Пигарова Е.А., Петрушкина А.А. Неклассические эффекты витамина D. Остеопороз и остеопатии. 2017; 20 (3): 90-101. doi: 10.14341/osteo2017390-101
  3. Wacker M, Holick M.F. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol 2013; 5 (1): 51-108.
  4. Петрушкина А.А., Пигарова Е.А., Рожинская Л.Я. Эпидемиология дефицита витамина D в Российской Федерации. Остеопороз и остеопатии. 2018; 21 (3): 15-20. doi: 10.14341/osteo10038
  5. Holick M.F, Binkley N.C, Bischoff-Ferrari H.A. et al; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96 (7): 1911-30. doi: 10.1210/jc.2011-0385. Erratum in: J Clin Endocrinol Metab. 2011; 96 (12): 3908.
  6. Martin A, David V, Quarles L.D. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012; 92 (1): 131-55.
  7. Masuyama R, Nakaya Y, Katsumata S et al. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J Bone Miner Res 2003; 18 (7): 1217-26.
  8. Hochberg Z, Tiosano D, Even L. Calcium therapy for calcitriol-resistant rickets. J Pediatr 1992; 121 (5 Pt. 1): 803-8.
  9. Benn B.S, Ajibade D, Porta A et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology 2008; 149 (6): 3196-205.
  10. Wasserman R.H. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr. 2004; 134 (11): 3137-9.
  11. Reyes-Fernandez P.C, Fleet J.C. Compensatory Changes in Calcium Metabolism Accompany the Loss of Vitamin D Receptor (VDR) From the Distal Intestine and Kidney of Mice. J Bone Miner Res 2016; 31 (1): 143-51.
  12. Dunn P.M. Sir Robert Hutchison (1871-1960) of London and the causes and treatment of rickets. Arch Dis Child Fetal Neonatal Ed 2005; 90 (6): F537-9.
  13. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J Clin Endocrinol Metab 2016; 101 (2): 394-415.
  14. Kim S, Yamazaki M, Zella L.A et al. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 2006; 26 (17): 6469-86.
  15. Lieben L, Masuyama R, Torrekens S et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest 2012; 122 (5): 1803-15.
  16. Bonewald L.F. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 2007; 1116: 281-90.
  17. Qing H, Ardeshirpour L, Pajevic P.D et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 2012; 27 (5): 1018-29.
  18. Чернова Т.О. Визуализация и количественный анализ при остеопорозе и остеомаляции. Мед. визуализация. 2005; 1: 111-21.
  19. Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я. и др. Краткое изложение клинических рекомендаций по диагностике и лечению остеопороза Российской ассоциации эндокринологов. Остеопороз и остеопатии. 2016; 19 (3): 28-36.
  20. Pike J.W, Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol Metab Clin North Am 2017; 46 (4): 815-43. doi: 10.1016/j.ecl.2017.07.001
  21. Christakos S, Dhawan P, Verstuyf A et al. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96 (1): 365-408.
  22. Плещева А.В., Пигарова Е.А., Дзеранова Л.К. Витамин D и метаболизм: факты, мифы и предубеждения. Ожирение и метаболизм. 2012; 9 (2): 33-42.
  23. Bischoff-Ferrari H.A, Dawson-Hughes B, Staehelin H.B et al. Fall prevention with supplemental and active forms of vitamin D: A meta-analysis of randomised controlled trials. Br Med J 2009; 339: 843-6. doi: 10.1136/bmj.b3692
  24. Winzenberg T, van der Mei I, Mason R.S et al. Vitamin D and the musculoskeletal health of older adults. Aust Fam Physician 2012; 41: 92-9.
  25. Gendelman O, Itzhaki D, Makarov S et al. A randomized double-blind placebo-controlled study adding high dose vitamin D to analgesic regimens in patients with musculoskeletal pain. Lupus 2015; 24: 483-9. doi: 10.1177/0961203314558676
  26. Worthman J, Matsuoka L, Chen T et al. Decreased bioavaillability of vitamin D in obesity. Am J Clin Nutr 2000, 72: 690-3.
  27. Arunabh S, Pollak S, Yeh J et al. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab 2003, 88: 157-61.
  28. Hypponen E, Power C. Vitamin D status and glucose homeostasis in the 1958 British Birth Cohort. Diabetes Care 2006; 29 (10): 2244-6.
  29. Lagunova Z, Porojnicu A, Lindberg F et al. The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res 2009; 29 (9): 3713-20.
  30. McGill A, Stewart J, Lithander F et al. Relationships of low serum vitamin D3 with anthropometry and markers of metabolic syndrome and diabetes in overweight and obesity. Nutrition J 2008; 7: 4.
  31. Aasheim E, Hofso D, Hjelmesaeth J et al. Vitamin status in morbidly obese patients: a cross-sectional study. Am J Clin Nutr 2008; 87: 362-9.
  32. Ybarra J, Sanchez-Hernandez J, Perez A. Hypovitaminosis D and morbid obesity. Nurs Clin North Am 2007; 42: 19-27.
  33. Carlin A, Rao D, Meslemani A et al. Prevalence of vitamin D depletion among morbidly obese patients sеeking gastric bypass surgery. Surg Obes Relat Dis 2006; 2: 98-103.
  34. Sanchez-Hernandez J, Ybarra J, Gich I et al. Effects of bariatric surgery on vitamin D status and secondary hyperparathyroidism: a prospective study. Obes Surg 2005; 15: 1389-95.
  35. Snijder M.B, van Dam R.M, Visser M et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab 2005; 90: 4119-23.
  36. Hultin H, Edfeldt K, Sundbom M, Hellman P. Left-Shifted Relation between Calcium and Parathyroid Hormone in Obesity. J Clin Endocrin Metab 2010; 95 (8): 3973-81.
  37. Heaney R.P, Davies K.M, Chen T.C et al. Human serum 25-hydroxychole-calciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 2003; 77 (1): 204-10.
  38. Evaluation, Treatment and Prevention of vitamin D Deficiency. An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011; 96 (7): 1911-30.
  39. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016; 4: 60-84.
  40. Lee P, Greenfield J, Seibel M et al. Adequacy of vitamin D replacement in severe deficiency is dependent on body mass index. Am J Med 2009; 122 (11): 1056-60.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-63969 от 18.12.2015. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия
ЭЛ № ФС 77 - 69134 от  24.03.2017.