С-реактивный белок в диагностике внебольничной пневмонии

Обложка

Цитировать

Полный текст

Аннотация

В статье приводится анализ актуальной информации о диагностической ценности С-реактивного белка (СРБ) в терапии и пульмонологии в разрезе дифференциального поиска патологии органов дыхательной системы, а также нозологических форм, имеющих общие элементы клинической симптоматики, характерной для внебольничной пневмонии (ВБП). Отражены история открытия, основные эффекты, биологическое значение и особенности лабораторной диагностики содержания СРБ в крови. Критически раскрыты результаты исследований по использованию концентрации СРБ в качестве биологического маркера возникновения ВБП, ее осложнений и тяжести течения, а также адекватности выбранной антибактериальной терапии.

Полный текст

Несмотря на постоянное усовершенствование компонентов и принципов антибактериальной терапии, проблема пневмонии сохраняется во всем мире [1]. Это обусловлено, с одной стороны, повсеместной распространенностью заболевания и неуклонным ростом заболеваемости, с другой стороны, отсутствием существенной тенденции к улучшению ранних и отдаленных исходов лечения. Данные обстоятельства являются причиной того, что летальность от внебольничной пневмонии (ВБП) не снижается, а число больных с затяжными, бессимптомными формами течения, а также с тяжелыми осложнениями основного заболевания неуклонно растет как в мире, так и в России [2, 3]. Пневмония, согласно классическим патофизиологическим понятиям, относится к наиболее частым причинам синдрома системной воспалительной реакции и является одной из ведущих причин смерти среди инфекционных заболеваний [4, 5]. Согласно наблюдениям последних 10-20 лет в палатах интенсивной терапии профильных отделений летальность при тяжелой пневмонии достигает 15-30% [1, 3, 6, 7]. При этом заболеваемость ВБП в развитых странах мира, в зависимости от уровня развития и благосостояния населения, варьируется в среднем от 1 до 11,6% среди лиц молодого и среднего возраста. В возрастной категории старше 65 лет ВБП встречается в 4 раза чаще и составляет 25-44% [8]. Несмотря на широкое распространение, медицинскую и социальную значимость, гипердиагностика пневмонии, по данным разных авторов, составляет от 16 до 52%, в то время как диапазон гиподиагностики варьирует от 0,9 до 18% [1, 2, 9]. Это ведет к тому, что летальность при пневмониях не снижается, а число больных с затяжным, малосимптомным течением, а также с тяжелыми и системными осложнениями в ходе болезни неуклонно растет. В настоящее время принято считать, что в основе патогенеза большинства заболеваний средней и более тяжести, включая заболевания инфекционной этиологии, лежат общие и местные закономерности формирования синдрома системного воспаления. Продукты повреждения тканей и жизнедеятельности микроорганизмов, токсины и катаболические вещества, иммунные комплексы и ряд других факторов одномоментно и в разной степени выраженности активируют механизмы развертывания воспалительной реакции. Медиаторы - факторы, регулирующие воспалительный процесс. Ранее считалось, что медиаторы и белки острой фазы воспаления оказывают только или преимущественно локальное воздействие. Сейчас же обосновано и доказано существенное системное влияние многих регуляторных молекул на уровне организма. В связи с этим в крови в зависимости от выраженности и тяжести воспалительных процессов могут накапливаться существенные концентрации веществ, оказывающих регуляторное влияние на течение системного воспалительного ответа, а следовательно, отражающих характер самого воспаления. Это позволяет лабораторной службе, определяя концентрацию такого вещества, а также динамику изменений его содержания, диагностировать и прогнозировать возникновение, течение и исход той или иной нозологической единицы. Одним из ярких примеров лабораторных маркеров наличия и тяжести воспалительной реакции в организме является С-реактивный белок (СРБ, CRP - от англ. C-reactive protein), использование которого в пульмонологии сложилось исторически и в настоящий момент обусловлено его высокой диагностической значимостью. СРБ - неспецифический белок острой фазы воспаления, являющийся a2-глобулином, относящимся по биохимической структуре к пентраксинам с молекулярной массой 115-135 кДа. Впервые данное вещество было обнаружено в крови больного пневмонией, вызванной Streptococcus pneumoniae, в лаборатории Oswald Avery (Rockefeller University, New York City) в конце 1920-х годов. Исследователи W.Tillet и T.Frances разделили на фракции белки S. pneumoniae, обнаружив при этом, что одна из них (впоследствии названная «фракция С») в присутствии ионизированного кальция осаждает белки, присутствующие в сыворотке крови пациентов с пневмонией. Позднее субстанцию «фракции С» исследователи назвали «С-полисахаридом пневмококка» (PnC), а белок крови, взаимодействующий с ней, - СРБ [10-12]. Впоследствии в 1940-х годах в ходе исследования свойств и диагностической значимости СРБ при инфекционно-воспалительных заболеваниях различной этиологии, тяжести и локализации было обнаружено устойчивое повышение его содержания в крови при острой фазе воспаления (в первые 4-6 ч болезни). Тогда же была обнаружена и доказана его этиологическая неспецифичность, так как повышенная концентрация СРБ наблюдалась при тяжелых травмах, ожоговой болезни и в послеоперационном периоде [13]. Позже ученые установили, что рост концентрации СРБ связан с увеличением его синтеза гепатоцитами, в меньшей степени - нейронами, почечными структурами, моноцитами, лимфоцитами и макрофагами альвеол под действием провоспалительных цитокинов - фактора некроза опухоли (ФНО-a), интерлейкина (ИЛ)-6, ИЛ-1 [14-16], т.е. цитокинов, которые вырабатываются в первые минуты развертывания воспалительной реакции. В настоящее время в лабораторной медицине к современным методам диагностики предъявляются весьма однозначные требования: максимально раннее и достоверное изменение концентрации или активности, свидетельствующее о начале, изменении течения патологического процесса. Согласно общебиологическим закономерностям лабораторные маркеры системного воспаления опережают структурные изменения, а следовательно, могут рассматриваться как ранние предикторы возникновения и течения заболевания [16]. Логично предположить, что упомянутые ранее цитокины (ФНО-a, ИЛ-6, ИЛ-1), вырабатываемые иммунными клетками при контакте с патогеном в первые секунды взаимодействия, являются оптимальным лабораторным маркером диагностики воспалительного процесса. Однако данные вещества характеризуются очень коротким периодом полураспада и существенной неспецифичностью, что делает их использование в практической лабораторной медицине в качестве маркеров оценки тяжести течения и возможного исхода заболевания статистически нецелесообразным [17]. Совершенно иная логика использования в тех же целях вещества - продукта синтеза общего влияния провоспалительных цитокинов на гепатоциты - СРБ соответствует полностью современным лабораторным критериям ранней диагностики общей воспалительной реакции организма больного. Его концентрация в крови достоверно повышается более популяционно значимого уровня (5 мг/л) уже в течение первых 4-6 ч от момента альтерации, достигая максимума в течение 48 ч (24-72 ч - в зависимости от тяжести патологического процесса). Более того, известно, что она удваивается каждые первые 8 ч, достигая максимума через 36-50 ч, а на фоне тяжелого генерализованного системного воспаления может возрастать в короткое время в 100 и более раз [1, 18, 19]. Период полувыведения СРБ поразительно стабилен, очень мал в сравнении с другими белками крови и составляет 19 ч, являясь постоянной величиной на фоне полного здоровья и патологии. Благодаря таким характеристикам концентрация СРБ целиком и полностью определяется только скоростью его синтеза, которая прямо пропорционально отражает интенсивность воспалительного процесса [18, 19]. В сравнении с наиболее распространенными в практике маркерами воспалительной реакции - скоростью оседания эритроцитов и уровнем лейкоцитов - содержание СРБ не зависит от приема пищи, суточного диуреза, наличия и выраженности анемии/полицитемии, концентрации сывороточных белков, формы эритроцитов, половой принадлежности (исключением являются поздние сроки беременности, когда наблюдается физиологическое незначительное повышение концентрации СРБ), что позволяет использовать его в экспресс-лабораториях [1, 18, 19]. Отклонение в типовой динамике изменения концентрации СРБ может наблюдаться только в случае выраженной печеночной недостаточности, когда продукция данного белка снижается [1, 18, 20]. Исключительно важным диагностическим аспектом использования СРБ является тот факт, что как белок острой фазы воспаления он появляется в крови в существенных концентрациях намного раньше появления антител. Более того, критически значимым является и изменение содержания в крови СРБ при стихании воспалительного процесса, когда концентрация его значимо уменьшается в течение 4-9 ч [1, 18, 19]. Таким образом, в настоящий момент СРБ рассматривается как наиболее чувствительный «эталонный» лабораторный маркер системного воспаления, тканевого повреждения и инфекционной альтерации [1]. В практической медицине максимальный рост содержания CРБ в крови определяется при бактериальных (100 мг/л и выше), вирусных и системных грибковых инфекциях (10-30 мг/л), а также при некрозах и существенном повреждении тканей (инфаркте миокарда, ожоговой болезни, политравме, опухолевых некрозах). СРБ, являясь одним из ключевых компонентов гуморального врожденного иммунитета, активирует моноциты, стимулирует экспрессию молекул адгезии VCAM-1, ICAM-1, Е-селектина на поверхности эндотелиоцитов, способствуя опсонизации микроорганизмов и их фагоцитозу. Ключевым эффектом СРБ является активация белка С3 компонента системы комплемента. В основе данного процесса лежит распознавание и связывание фрагментов фосфоэтаноламина и фосфохолина, присутствующих в С-полисахаридах бактериальной стенки, CРБ (помимо него в этом процессе участвуют иммуноглобулин М и сывороточный амилоид Р), а также взаимодействие с М-фиколином (M-ficolin), способным к распознаванию патогенных микроорганизмов и участию в активации комплемента [21-23]. Также СРБ играет ключевую роль и в удалении из организма продуктов повреждения собственных тканей. Эту функцию острофазный белок реализует за счет возможности связывания с фосфатидилхолином - основным структурным элементом клеточных мембран, в физиологических условиях находящимся внутри клетки и при выраженной альтерации, апоптозе и некрозе «выворачивающимся» наружу в межклеточное пространство [24]. Имеются убедительные данные о том, что, помимо вышеописанной активации комплемента по классическому пути, СРБ за счет связывания с фактором H, являющимся растворимым гликопротеином, циркулирующим в плазме, способен активировать компоненты системы комплемента и по альтернативному пути [21-24]. Многочисленные отечественные и зарубежные исследования позволяют говорить о высокой диагностической значимости определения концентрации СРБ у больных с подозрением на ВБП. Достоверно отмечено, что его использование диагностически оправдано, так как позволяет провести дифференциальный поиск, патогенетически обоснованную оценку тяжести, прогнозирование ранних и отдаленных осложнений, а также определить адекватность, чувствительность и достаточность проводимой антибактериальной терапии [25, 26]. Необходимо подчеркнуть, что благодаря наличию множества крупных и значимых исследований пороговые, диагностически достоверные уровни СРБ для диагностики как самой ВБП, так и ее различных осложнений и стадий существенно не варьируют и широко известны. Также определены и ключевые значения концентрации СРБ для различных по возрасту и тяжести заболевания когорт пациентов. По мнению подавляющего большинства авторов, диагностически значимый пороговый уровень СРБ при ВБП должен превышать 50 мг/л [27-29]. Высокоспецифичным для пневмонии является уровень концентрации СРБ более 100 мг/л, позволяя в неоднозначных случаях положительно решить вопрос о необходимости назначения эмпирической антибиотикотерапии [1, 27, 30]. Известна и полностью противоположная ситуация - содержание СРБ, при котором ВБП исключена (менее 11 мг/л) [27, 30]. В каждодневной работе врача общей практики и пульмонолога возникает потребность в дифференциальной диагностике между обострением хронической обструктивной болезни легких (ХОБЛ), ее инфекционными осложнениями, бронхиальной астмой, с одной стороны, и ВБП - с другой (табл. 1). Пороговое значение концентрации СРБ, позволяющее отделить больных ВБП от пациентов с обострением ХОБЛ, составляет 33 мг/л (большее значение свидетельствует о пневмонии) [30]. В случае проведения дифференциальной диагностики между бронхиальной астмой (ее осложнениями) и ВБП диагностически значимый уровень концентрации СРБ в крови, однозначно позволяющий достоверно установить наличие ВБП, составляет 48 мг/л и более [31]. В отечественной литературе общепризнанным и наиболее цитируемым пороговым содержанием СРБ для верификации ВБП признана величина в 51,5 мг/л [32]. Многочисленные попытки дифференцировать ВБП согласно этиологическому фактору (бактериальной или вирусной природы) по уровню концентрации СРБ в крови нельзя признать удачными, так как у большинства исследователей полученные результаты значимо разнятся. Это абсолютно логичный факт, так как, понимая механизм запуска и поддержания усиленного синтеза белков острой фазы воспаления, можно утверждать, что ключевым элементом, определяющим концентрацию СРБ, является не микроорганизм или вирус, а тяжесть воспалительной реакции (количество провоспалительных цитокинов), ее выраженность и степень деструкции легочной ткани. Только пневмококковая и легионеллезная пневмонии сопровождаются исключительно высоким содержанием СРБ, нехарактерным для пневмоний другой этиологии. Так, при пневмококковой этиологии ВБП концентрация СРБ, как правило, существенно больше 160 мг/л, а для легионеллезной пневмонии данный показатель чаще всего в дебюте заболевания не опускается ниже 170 мг/л (по некоторым данным, достигая 250 мг/л) [30, 33]. В отличие от отсутствующей корреляции между уровнем СРБ и этиологическим фактором ВБП, доказана и не подлежит сомнению корреляционная зависимость между концентрацией СРБ в крови, тяжестью и прогнозом ВБП. Так, по мнению большинства исследователей, уровень СРБ в крови в диапазоне 100-110 мг/л является независимым показателем необходимости срочной госпитализации больного [34, 35], а концентрация СРБ>150 мг/л - прогностически неблагоприятный признак тяжелого течения ВБП и должна служить поводом для интенсификации антибактериальной и дезинтоксикационной терапии. Определение концентрации СРБ в крови облегчает диагностический поиск у пациентов с хронической сердечной недостаточностью, когда кардиогенная симптоматика может завуалировать развитие ВБП. В таком случае клиницистам рекомендуется исходить из порогового уровня концентрации СРБ в 28,5 мг/л, свидетельствующего о развитии ВБП [8, 9]. Обратная клиническая картина, характеризующаяся малым риском развития осложнений, исходно сопровождается низким значением концентрации СРБ и/или снижением в первые 72 ч после начала специфической терапии [36]. Неспецифичность СРБ как острофазного белка, отражающего тяжесть воспалительного процесса, позволяет эффективно использовать динамику изменений его концентрации в качестве маркера эффективности проводимой терапии (табл. 2) [34]. Доказано, что сохранение концентрации СРБ в крови свыше 100 мг/л на 4-е сутки антибиотикотерапии свидетельствует о неэффективности терапии [37]. Более того, увеличение концентрации СРБ на фоне антибиотикотерапии является отрицательным прогностическим признаком, свидетельствующим о росте риска развития осложнений и смертности. Снижение или нормализация концентрации СРБ в крови, согласно закономерностям течения воспаления как типового патологического процесса, должно также коррелировать с падением активности патологических процессов. Именно эта логика лежит в основе использования отсутствия или замедленного снижения уровня СРБ как прогностического маркера неэффективности проводимой антибактериальной терапии [38]. Кроме того, ежедневное определение СРБ позволяет существенно уменьшить продолжительность антибиотикотерапии, снизить частоту развития и тяжесть нежелательных лекарственных реакций, вероятность развития антибиотикорезистентности, а также сократить экономические и медицинские затраты на лечение больных тяжелой ВБП [39]. В настоящее время определение концентрации СРБ в крови больных ВБП регламентировано в ряде международных стандартов. Так, согласно рекомендациям Британского торакального общества, измерение содержания СРБ целесообразно проводить в начале антибиотикотерапии, а также через несколько дней [40]. Европейскими экспертами пороговое значение СРБ>100 мг/л при наличии клинических симптомов инфекционного поражения органов дыхательной системы положено в основу диагностики пневмонии и безотлагательного начала антибактериальной терапии. В современных условиях определение активности СРБ является обязательным при диагностике пневмонии у детей [41]. Противоположная картина описана при концентрациях СРБ<20 мг/л, когда на фоне симптомов поражения бронхов и/или легких необходимо проводить дополнительный диагностический поиск альтернативных причин страдания органов дыхательной системы (обострение хронического бронхита, тромбоэмболия легочной артерии, сердечная недостаточность и пр.) [34]. Таким образом, определение концентрации СРБ в крови является ценным лабораторным методом дифференциальной диагностики в терапии и пульмонологии, а также чувствительным критерием своевременного мониторинга эффективности антибактериальной терапии ВБП. Увеличение его концентрации в крови более 50 мг/л при наличии респираторной симптоматики с высокой долей вероятности указывает на наличие ВБП, а исходно высокая концентрация, длительное отсутствие динамики к снижению, а также увеличение концентрации коррелируют с неблагоприятным течением пневмонии и неэффективной антибиотикотерапией. Более того, отсутствие существенного повышения содержания СРБ при наличии симптоматики поражения органов дыхательной системы должно направлять врача на диагностический поиск иной патологии, приведшей к данной клинической картине.
×

Об авторах

Антон Валерьевич Ершов

ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский Университет); ФГБНУ ФНКЦ РР

Email: salavatprof@mail.ru
д-р мед. наук, проф. каф. патофизиологии, ст. науч. сотр. НИИ общей реаниматологии имени В.А.Неговского

Список литературы

  1. Титова О.Н., Кузубова Н.А., Лебедева Е.С. Биомаркеры прогноза тяжести течения и исхода внебольничной пневмонии. Мед. альянс. 2018; 2: 55-60.
  2. Бородулин Б.Е., Черногаева Г.Ю., Бородулина Е.А. и др. Летальность от внебольничной пневмонии в условиях многопрофильной больницы за 10 лет. Мед. альманах. 2012; 2 (21): 34-6.
  3. Бородулина Е.А., Бородулин Б.Е., Поваляева Л.В. и др. Предикторы летальности от внебольничной пневмонии в современных условиях работы пульмонологического центра. Вестн. современ. клин. медицины. 2015; 8 (4): 19-22.
  4. Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Внебольничная пневмония у взрослых: практические рекомендации по диагностике, лечению и профилактике. М.: МАКМАХ, 2010.
  5. Muller B, Harbarth S, Stolz D et al. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect Dis 2007; 7: 10.
  6. Watkins R.R, Lemonovich T.L. Diagnosis and management of community-acquired pneumonia in adult. Am Fam Physician 2011; 83 (11): 1299-306.
  7. Woodhead M et al. ERS/ESCMID Joint Task Force. Clin Microbiol Infect 2011; 17 (6): 1.
  8. Бобылев А.А., Рачина С.А., Авдеев С.Н., Дехнич Н.Н. Клиническое значение определения С-реактивного белка в диагностике внебольничной пневмонии. Клин. фармакология и терапия. 2016; 25 (2): 32-42.
  9. Бобылев А.А., Рачина С.А., Авдеев С.Н., Младов В.В. Перспективы применения биомаркеров для диагностики внебольничной пневмонии на фоне хронической сердечной недостаточности. Клин. фармакология и терапия. 2018; 27 (3): 16-25.
  10. Tillet W, Francis T. Serological reaction in pneumonia with a non-protein somatic fraction of Pneumococcus. J Exp Med 1930; 52: 561-71.
  11. Ghose T. Oswald Avery: the professor, DNA, and the Nobel Prize that eluded him. Can Bull Med Hist 2004; 21 (1): 135-44.
  12. Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Ann Rev Immunol 2010; 28: 157-83.
  13. MacLeod C.M, Avery O.T. The occurrence during acute infections of a protein not normally present in the blood: II. Isolation and properties of the reactive protein. J Exp Med 1941; 73 (2): 183-90.
  14. Singh P.P, Voleti B, Agrawal A. A novel RBP-J kappa-dependent switch from C/EBP beta to C/EBP zeta at the C/EBP binding site on the C-reactive protein promoter. J Immunol 2007; 178 (11): 7302-9.
  15. Thompson D, Pepys M.B, Wood S.P. The physiological structure of human Creactive protein and its complex with phosphocholine. Structure 1999; 7 (2): 169-77.
  16. Рыдловская А.В., Симбирцев А.С. Функциональный полиморфизм гена TNF-a и патология. Цитокины и воспаление. 2005; 4 (3): 4-10.
  17. Shaddock E.J. How and when to use common biomarkers in community-acquired pneumonia. Pneumonia (Nathan) 2016; 8: 17.
  18. Young B, Greeson M, Gripps A.W et al. C-reactive protein: a critical review. Pathology 1991; 23: 118-24.
  19. Зайцев А.А., Кондратьева Т.В., Маджанова Е.Р. Диагностические и прогностические возможности количественного определения С-реактивного белка при внебольничной пневмонии. Воен.-мед. журн. 2013; 11: 35-40.
  20. Pepys M.B, Hirschfield G.M. C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805-12.
  21. Yuste J et al. Serum amyloid P aids complement-mediated immunity to Streptococcus pneumonia. PLoS Pathog 2007; 3 (9): 1208-19.
  22. Brown J.S et al. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A 2002; 99 (26): 16969-74.
  23. Kerr A.R et al. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3. Infect Immun 2005; 73 (7): 4245-52.
  24. Li Y.P, Mold C, Du Clos T.W. Sublytic complement attack exposes C-reactive protein binding sites on cell membranes. J Immunol 1994; 152 (6): 2995-3005.
  25. Bauer S, Lamy O. Role of C-reactive protein in the diagnosis, prognosis and follow-up of community-acquired pneumonia. Rev Med Suisse 2010; 6 (269): 2068-70.
  26. Van der Meer V, Neven A, Van den Broek P, Assendelft W. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. BMJ 2005; 331 (7507): 26.
  27. Flanders S.A, Stein J, Shochat G et al. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 2004; 116: 529-35.
  28. Kang Y.A, Kwon S.Y, Yoon H.I et al. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med 2009; 24 (4): 337-42.
  29. Steurer J, Held U, Spaar A et al. A decision aid to rule out pneumonia and reduce unnecessary prescriptions of antibiotics inprimary care patients with cough and fever. BMC Med 2011; 9: 56.
  30. Almirall J, Bolipar I, Vidal J et al. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125: 1335-42.
  31. Bafadhel M, Clark T.W, Reid C et al. Procalcitonin and C-reactive protein in hospitalized adult patients with communityacquired pneumonia or exacerbation of asthma or COPD. Chest 2011; 139 (6): 1410-8.
  32. Авдеев С.Н., Баймаканова Г.Е., Зубаирова П.А. Возможности С-реактивного белка в диагностике бактериальной инфекции и пневмонии у больных с обострением хронической обструктивной болезни легких. Уральский мед. журн. 2008; 13: 19-24.
  33. Garcia Vazquez E, Martines J.A, Menza J et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J 2003; 21: 702-5.
  34. Hohenthal U, Hurme S, Helenius H et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect 2009; 15 (11): 1026-32.
  35. Chalmers J.D, Singanayagam A, Scally C et al. Risk Factors for complicated parapneumonic effusion and empyema on presentation to hospital with community-acquired pneumonia. Thorax 2009; 64: 592-597.
  36. Menendez R, Martinez R, Reyes S et al. Stability in community-acquired pneumonia: one step forward with markers? Thorax 2009; 64: 987-92.
  37. Smith R.P. C-reactive protein in simple community-acquired pneumonia. Chest 1995; 107: 1028-31.
  38. Bruns A.H, Oosterheert J.J, Hak E, Hoepelman A.I. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J 2008; 32: 726-32.
  39. Seligman R, Ramos-Lima L.F, Oliveira V.A et al. Biomarkers in community-acquired pneumonia: A state-of-the-art review. Clinics 2012; 67 (11): 1321-5.
  40. Castro-Guardiola A, Armengou-Arxe A, Viedjo-Rodriguez A et al. Differential diagnosis between community-acquired pneumonia and non-pneumonia diseases of the chest in the emergency ward. Eur J Intern Med 2000; 11: 334-9.
  41. Вахитов Х.М., Пикуза О.И., Вахитова Л.Ф. и др. Значение определения С-реактивного белка для дифференциальной диагностики бронхита и пневмонии у детей. Практ. медицина. 2012; 7 (63): 23.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-63969 от 18.12.2015. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия
ЭЛ № ФС 77 - 69134 от  24.03.2017.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах